138 research outputs found

    Problèmes d'optimisation globale en statistique robuste

    Get PDF
    La statistique robuste est une branche de la statistique qui s'intéresse à l'analyse de données contenant une proportion significative d'observations contaminées avec des erreurs dont l'ampleur et la structure peuvent être arbitraires. Les estimateurs robustes au sens du point de rupture sont généralement définis comme le minimum global d'une certaine mesure non-convexe des erreurs, leur calcul est donc un problème d'optimisation globale très couteux. L'objectif de cette thèse est d'étudier les contributions possibles des méthodes d'optimisation globales modernes à l'étude de cette classe de problème. La première partie de la thèse est consacrée au tau-estimateur pour la régression linéaire robuste, qui est défini comme étant un minimum global d'une fonction non-convexe et dérivable. Nous étudions l'impact des techniques d'agglomération et des conditions d'arrêt sur l'efficacité des algorithmes existants. Les conséquences de certains phénomènes liés au voisin le plus proche en grande dimension sur ces algorithmes agglomératifs d'optimisation globale sont aussi mises en évidence. Dans la deuxième partie de la thèse, nous étudions des algorithmes déterministes pour le calcul de l'estimateur de moindres carrés tronqués, qui est défini à l'aide d'un programme en Nombres entiers non linéaire. En raison de sa nature combinatoire, nous avons dirigé nos efforts vers l'obtention de bornes inférieures pouvant être utilisées dans un algorithme du type branch-and-bound. Plus précisément, nous proposons une relaxation par un programme sur le cône de deuxième ordre, qui peut être renforcée avec des coupes dont nous présentons l'expression explicite. Nous fournissons également des conditions d'optimalité globale.Robust statistics is a branch of statistics dealing with the analysis of data containing contaminated observations. The robustness of an estimator is measured notably by means of the breakdown point. High-breahdown point estimators are usuallly defined as global minima of a non-convex scale of the erros, hence their computation is a challenging global optimization problem. The objective of this dissertation is to investigate the potential distribution of modern global optimization methods to this class of problem. The first part of this thesis is devoted to the tau-estimator for linear regression, which is defined as a global minimum of a nonconvex differentiable function. We investigate the impact of incorporating clustering techniques and stopping conditions in existing stochastic algorithms. The consequences of some phenomena involving the nearest neighbor in high dimension on clustering global optimization algorithms is thoroughly discussed as well. The second part is devoted to deterministic algorithms for computing the least trimmed squares regression estimator, Which is defined through a nonlinear mixed-integer program. Due to the combinatorial nature of this problem, we concentrated on obtaining lower bounds to be used in a branch-and-bound algorithm. In particular, we propose a second-order cone relaxation that can be complemented with concavity cuts that we obtain explicitly. Global optimality conditions are also provided

    Statistical Models and Optimization Algorithms for High-Dimensional Computer Vision Problems

    Get PDF
    Data-driven and computational approaches are showing significant promise in solving several challenging problems in various fields such as bioinformatics, finance and many branches of engineering. In this dissertation, we explore the potential of these approaches, specifically statistical data models and optimization algorithms, for solving several challenging problems in computer vision. In doing so, we contribute to the literatures of both statistical data models and computer vision. In the context of statistical data models, we propose principled approaches for solving robust regression problems, both linear and kernel, and missing data matrix factorization problem. In computer vision, we propose statistically optimal and efficient algorithms for solving the remote face recognition and structure from motion (SfM) problems. The goal of robust regression is to estimate the functional relation between two variables from a given data set which might be contaminated with outliers. Under the reasonable assumption that there are fewer outliers than inliers in a data set, we formulate the robust linear regression problem as a sparse learning problem, which can be solved using efficient polynomial-time algorithms. We also provide sufficient conditions under which the proposed algorithms correctly solve the robust regression problem. We then extend our robust formulation to the case of kernel regression, specifically to propose a robust version for relevance vector machine (RVM) regression. Matrix factorization is used for finding a low-dimensional representation for data embedded in a high-dimensional space. Singular value decomposition is the standard algorithm for solving this problem. However, when the matrix has many missing elements this is a hard problem to solve. We formulate the missing data matrix factorization problem as a low-rank semidefinite programming problem (essentially a rank constrained SDP), which allows us to find accurate and efficient solutions for large-scale factorization problems. Face recognition from remotely acquired images is a challenging problem because of variations due to blur and illumination. Using the convolution model for blur, we show that the set of all images obtained by blurring a given image forms a convex set. We then use convex optimization techniques to find the distances between a given blurred (probe) image and the gallery images to find the best match. Further, using a low-dimensional linear subspace model for illumination variations, we extend our theory in a similar fashion to recognize blurred and poorly illuminated faces. Bundle adjustment is the final optimization step of the SfM problem where the goal is to obtain the 3-D structure of the observed scene and the camera parameters from multiple images of the scene. The traditional bundle adjustment algorithm, based on minimizing the l_2 norm of the image re-projection error, has cubic complexity in the number of unknowns. We propose an algorithm, based on minimizing the l_infinity norm of the re-projection error, that has quadratic complexity in the number of unknowns. This is achieved by reducing the large-scale optimization problem into many small scale sub-problems each of which can be solved using second-order cone programming

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM
    • …
    corecore