608 research outputs found

    Explainable AI based Interventions for Pre-season Decision Making in Fashion Retail

    Full text link
    Future of sustainable fashion lies in adoption of AI for a better understanding of consumer shopping behaviour and using this understanding to further optimize product design, development and sourcing to finally reduce the probability of overproducing inventory. Explainability and interpretability are highly effective in increasing the adoption of AI based tools in creative domains like fashion. In a fashion house, stakeholders like buyers, merchandisers and financial planners have a more quantitative approach towards decision making with primary goals of high sales and reduced dead inventory. Whereas, designers have a more intuitive approach based on observing market trends, social media and runways shows. Our goal is to build an explainable new product forecasting tool with capabilities of interventional analysis such that all the stakeholders (with competing goals) can participate in collaborative decision making process of new product design, development and launch

    Estimating Financial Trends by Spline Fitting via Fisher Algoritm

    Get PDF
    Trends have a crucial role in finance such as setting investment strategies and technical analysis.  Determining trend changes in an optimal way is the main aim of this study. The model of this study improves the optimality by spline fitting to the equations to reduce the error terms. The results show that spline fitting is more efficient compared to line fitting by % and Fisher Method by %. This method may be used to determine regime switches as well

    Improving the consumer demand forecast to generate more accurate suggested orders at the store-item level

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; in conjunction with the Leaders for Manufacturing Program at MIT, 2008.Includes bibliographical references (p. 57).One of the biggest opportunities for this consumer goods company today is reducing retail stockouts at its Direct Store Delivery (DSD) customers via pre-selling, which represents approximately 70% of the company's total sales volume. But reducing retail stock-outs is becoming constantly more challenging with an ever-burgeoning number of SKUs due to new product introductions and packaging innovations. The main tool this consumer goods company uses to combat retail stock-outs is the pre-sell handheld, which the company provides to all field sales reps. The handheld runs proprietary software developed by this consumer goods company that creates suggested orders based on a number of factors including: * Baseline forecast (specific to store-item combination) * Seasonality effects (i.e., higher demand for products during particular seasons) * Promotional effects (i.e., lift created from sale prices) * Presence of in-store displays (i.e., more space for product than just shelf space) * Weekday effects (i.e., selling more on weekends when most people shop) * Holiday effects (i.e., higher demand for products at holidays) * Inventory levels on the shelves and in the back room * In-transit orders (i.e., orders that may already be on their way to the customer) The more accurate that the suggested orders are, the fewer retail stock-outs will occur. This project seeks to increase the accuracy of the consumer demand forecast, and ultimately the suggested orders, by improving the baseline forecast and accounting for the effect of cannibalization on demand.by Susan D. Bankston.S.M.M.B.A

    Scaling forecasting algorithms using clustered modeling

    Get PDF
    Cataloged from PDF version of article.Research on forecasting has traditionally focused on building more accurate statistical models for a given time series. The models are mostly applied to limited data due to efficiency and scalability problems. However, many enterprise applications require scalable forecasting on large number of data series. For example, telecommunication companies need to forecast each of their customers' traffic load to understand their usage behavior and to tailor targeted campaigns. Forecasting models are typically applied on aggregate data to estimate the total traffic volume for revenue estimation and resource planning. However, they cannot be easily applied to each user individually as building accurate models for large number of users would be time consuming. The problem is exacerbated when the forecasting process is continuous and the models need to be updated periodically. This paper addresses the problem of building and updating forecasting models continuously for multiple data series. We propose dynamic clustered modeling for forecasting by utilizing representative models as an analogy to cluster centers. We apply the models to each individual series through iterative nonlinear optimization. We develop two approaches: The Integrated Clustered Modeling integrates clustering and modeling simultaneously, and the Sequential Clustered Modeling applies them sequentially. Our findings indicate that modeling an individual's behavior using its segment can be more scalable and accurate than the individual model itself. The grouped models avoid overfits and capture common motifs even on noisy data. Experimental results from a telco CRM application show the method is efficient and scalable, and also more accurate than having separate individual models
    corecore