1,869 research outputs found

    Two-echelon freight transport optimisation: unifying concepts via a systematic review

    Get PDF
    Multi-echelon distribution schemes are one of the most common strategies adopted by the transport companies in an aim of cost reduction, but their identification in scientific literature is not always easy due to a lack of unification. This paper presents the main concepts of two-echelon distribution via a systematic review, in the specific a meta-narrative analysis, in order to identify and unify the main concepts, issues and methods that can be helpful for scientists and transport practitioners. The problem of system cost optimisation in two-echelon freight transport systems is defined. Moreover, the main variants are synthetically presented and discussed. Finally, future research directions are proposed.location-routing problems, multi-echelon distribution, cross-docking, combinatorial optimisation, systematic review.

    Genetic algorithm for the continuous location-routing problem

    Get PDF
    This paper focuses on the continuous location-routing problem that comprises of the location of multiple depots from a given region and determining the routes of vehicles assigned to these depots. The objective of the problem is to design the delivery system of depots and routes so that the total cost is minimal. The standard location-routing problem considers a finite number of possible locations. The continuous location-routing problem allows location to infinite number of locations in a given region and makes the problem much more complex. We present a genetic algorithm that tackles both location and routing subproblems simultaneously.Web of Science29318717

    Heliostat field cleaning scheduling for Solar Power Tower plants: a heuristic approach

    Get PDF
    Soiling of heliostat surfaces due to local climate has a direct impact on their optical efficiency and therefore a direct impact on the productivity of the Solar Power Tower plant. Cleaning techniques applied are dependent on plant construction and current schedules are normally developed considering heliostat layout patterns, providing sub-optimal results. In this paper, a method to optimise cleaning schedules is developed, with the objective of maximising energy generated by the plant. First, an algorithm finds a cleaning schedule by solving an integer program, which is then used as a starting solution in an exchange heuristic. Since the optimisation problems are of large size, a p-median type heuristic is performed to reduce the problem dimensionality by clustering heliostats into groups to be cleaned in the same period.Ministerio de Economía y Competitivida

    The two-echelon capacitated vehicle routing problem: models and math-based heuristics

    Get PDF
    Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons. The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites. A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed

    Constant-Factor FPT Approximation for Capacitated k-Median

    Get PDF
    Capacitated k-median is one of the few outstanding optimization problems for which the existence of a polynomial time constant factor approximation algorithm remains an open problem. In a series of recent papers algorithms producing solutions violating either the number of facilities or the capacity by a multiplicative factor were obtained. However, to produce solutions without violations appears to be hard and potentially requires different algorithmic techniques. Notably, if parameterized by the number of facilities k, the problem is also W[2] hard, making the existence of an exact FPT algorithm unlikely. In this work we provide an FPT-time constant factor approximation algorithm preserving both cardinality and capacity of the facilities. The algorithm runs in time 2^O(k log k) n^O(1) and achieves an approximation ratio of 7+epsilon

    Industry 4.0 in civil engineering: delivery route optimization with smart roads

    Get PDF

    Multi-start heuristics for the Two-Echelon Vehicle Routing Problem

    Get PDF
    In this paper we address the Two-Echelon Vehicle Routing Problem (2E-VRP), an extension of the classical Capacitated VRP, where the delivery from a single depot to the customers is managed by routing and consolidating the freight through intermediate depots called satellites. We present a family of Multi-Start heuristics based on separating the depot-to-satellite transfer and the satellite-to-customer delivery by iteratively solving the two resulting routing subproblems, while adjusting the satellite workloads that link them. The common scheme on which all the heuristics are based consists in, after having found an initial solution, applying a local search phase, followed by a diversification; if the new obtained solutions are feasible, then local search is applied again, otherwise a feasibility search procedure is applied, and if it successful, the local search is applied on the newfound solution. Different diversification strategies and feasibility search rules are proposed. We present computational results on a wide set of instances up to 50 customers and 5 satellites and compare them with results from the literature, showing how the new methods outperform previous existent methods, both in efficiency and accurac

    Petal-shaped clustering for the capacitated vehicle routing problem

    Get PDF
    A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in partial fulfillment of the requirements for the degree of Master of Science in Engineering. Johannesburg, February 2018In this research report, k-medoid (petal-shaped) clustering is modelled and evaluated for the Capacitated Vehicle Routing Problem (CVRP). To determine routes, an existing metaheuristic, termed the Ruin and Recreate method, is applied to each generated cluster. Results are benchmarked to that of a well-known clustering method, k-means clustering. The performance of the methods is measured in terms of travel cost and distance travelled, which are well-known metrics for Vehicle Routing Problems (VRPs). The results show that k-medoid outperforms the benchmark method for most instances of the test datasets, although the CVRP without any predefined clusters still provide solutions that are closer to optimal. Clustering remains a reliable distribution management tool and reduces processing requirements of large scale CVRPs.MT 201
    corecore