2,552 research outputs found

    SPEEDY: An Eclipse-based IDE for invariant inference

    Full text link
    SPEEDY is an Eclipse-based IDE for exploring techniques that assist users in generating correct specifications, particularly including invariant inference algorithms and tools. It integrates with several back-end tools that propose invariants and will incorporate published algorithms for inferring object and loop invariants. Though the architecture is language-neutral, current SPEEDY targets C programs. Building and using SPEEDY has confirmed earlier experience demonstrating the importance of showing and editing specifications in the IDEs that developers customarily use, automating as much of the production and checking of specifications as possible, and showing counterexample information directly in the source code editing environment. As in previous work, automation of specification checking is provided by back-end SMT solvers. However, reducing the effort demanded of software developers using formal methods also requires a GUI design that guides users in writing, reviewing, and correcting specifications and automates specification inference.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    A Monitoring Language for Run Time and Post-Mortem Behavior Analysis and Visualization

    Get PDF
    UFO is a new implementation of FORMAN, a declarative monitoring language, in which rules are compiled into execution monitors that run on a virtual machine supported by the Alamo monitor architecture.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    Featherweight VeriFast

    Full text link
    VeriFast is a leading research prototype tool for the sound modular verification of safety and correctness properties of single-threaded and multithreaded C and Java programs. It has been used as a vehicle for exploration and validation of novel program verification techniques and for industrial case studies; it has served well at a number of program verification competitions; and it has been used for teaching by multiple teachers independent of the authors. However, until now, while VeriFast's operation has been described informally in a number of publications, and specific verification techniques have been formalized, a clear and precise exposition of how VeriFast works has not yet appeared. In this article we present for the first time a formal definition and soundness proof of a core subset of the VeriFast program verification approach. The exposition aims to be both accessible and rigorous: the text is based on lecture notes for a graduate course on program verification, and it is backed by an executable machine-readable definition and machine-checked soundness proof in Coq

    Causal reasoning about distributed programs

    Get PDF
    We present an integrated approach to the specification, verification and testing of distributed programs. We show how global properties defined by transition axiom specifications can be interpreted as definitions of causal relationships between process states. We explain why reasoning about causal rather than global relationships yields a clearer picture of distributed processing.;We present a proof system for showing the partial correctness of CSP programs that places strict restrictions on assertions. It admits no global assertions. A process annotation may reference only local state. Glue predicates relate pairs of process states at points of interprocess communication. No assertion references auxiliary variables; appropriate use of control predicates and vector clock values eliminates the need for them. Our proof system emphasizes causality. We do not prove processes correct in isolation. We instead track causality as we write our annotations. When we come to a send or receive, we consider all the statements that could communicate with it, and use the semantics of CSP message passing to derive its postcondition. We show that our CSP proof system is sound and relatively complete, and that we need only recursive assertions to prove that any program in our fragment of CSP is partially correct. Our proof system is, therefore, as powerful as other proof systems for CSP.;We extend our work to develop proof systems for asynchronous communication. For each proof system, our motivation is to be able to write proofs that show that code satisfies its specification, while making only assertions we can use to define the aspects of process state that we should trace during test runs, and check during postmortem analysis. We can trace the assertions we make without having to modify program code or add synchronization or message passing.;Why, if we verify correctness, would we want to test? We observe that a proof, like a program, is susceptible to error. By tracing and analyzing program state during testing, we can build our confidence that our proof is valid

    HOP: a process model for synchronous hardware systems

    Get PDF
    technical reportModules in HOP are black-boxes that are understood and used only in terms of their interface. The interface consists of d a t a ports, events, and a protocol specification that uses events and asserts/queries values to / from ports. Events are realized as different combinations of control wires or as predicates defined over data conduits. Module await either command events or status events. Data conduits are realized as bus structures that deliver the same data items at the receiving end as items sent at t h e sending end (i.e. the busses do not have any wire-permutations, tappings, etc.). HOP is useful for writing both requirements (a priori) specifications and design (a posteriori) specifications. The manner in which requirements are expressed has usually no bearing on the actual implementation chosen later. Design specifications capture known facts about a system that has been built or has been designed in detail. In a HOP based design methodology, design proceeds hierarchically, and on many occasions (but not always) top-down. For most large systems, t h e requirements specification consists of the specification of a collection of modules and not one module; for these systems, the single module view is only derived a posteriori

    Enforcing Behavioral Constraints in Evolving Aspect-Oriented Programs

    Full text link
    Reasoning, specification, and verification of Aspect-Oriented (AO) programs presents unique challenges especially as such programs evolve over time. Components, base-code and aspects alike, may be easily added, removed, interchanged, or presently unavailable at unpredictable frequencies. Consequently, modular reasoning of such programs is highly attractive as it enables tractable evolution, otherwise necessitating that the entire program be reexamined each time a component is changed. It is well known, however, that modular reasoning about AO programs is difficult. In this paper, we present our ongoing work in constructing a rely-guarantee style reasoning system for the Aspect-Oriented Programming (AOP) paradigm, adopting a trace-based approach to deal with the plug-n-play nature inherent to these programs, thus easing AOP evolution

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose
    • …
    corecore