18,121 research outputs found

    Human-Agent Decision-making: Combining Theory and Practice

    Full text link
    Extensive work has been conducted both in game theory and logic to model strategic interaction. An important question is whether we can use these theories to design agents for interacting with people? On the one hand, they provide a formal design specification for agent strategies. On the other hand, people do not necessarily adhere to playing in accordance with these strategies, and their behavior is affected by a multitude of social and psychological factors. In this paper we will consider the question of whether strategies implied by theories of strategic behavior can be used by automated agents that interact proficiently with people. We will focus on automated agents that we built that need to interact with people in two negotiation settings: bargaining and deliberation. For bargaining we will study game-theory based equilibrium agents and for argumentation we will discuss logic-based argumentation theory. We will also consider security games and persuasion games and will discuss the benefits of using equilibrium based agents.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    Fuzzy argumentation for trust

    No full text
    In an open Multi-Agent System, the goals of agents acting on behalf of their owners often conflict with each other. Therefore, a personal agent protecting the interest of a single user cannot always rely on them. Consequently, such a personal agent needs to be able to reason about trusting (information or services provided by) other agents. Existing algorithms that perform such reasoning mainly focus on the immediate utility of a trusting decision, but do not provide an explanation of their actions to the user. This may hinder the acceptance of agent-based technologies in sensitive applications where users need to rely on their personal agents. Against this background, we propose a new approach to trust based on argumentation that aims to expose the rationale behind such trusting decisions. Our solution features a separation of opponent modeling and decision making. It uses possibilistic logic to model behavior of opponents, and we propose an extension of the argumentation framework by Amgoud and Prade to use the fuzzy rules within these models for well-supported decisions

    Semantic Support for Computational Land-Use Modelling

    Get PDF
    Postprin

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    A Semantic Grid Service for Experimentation with an Agent-Based Model of Land-Use Change

    Get PDF
    Agent-based models, perhaps more than other models, feature large numbers of parameters and potentially generate vast quantities of results data. This paper shows through the FEARLUS-G project (an ESRC e-Social Science Initiative Pilot Demonstrator Project) how deploying an agent-based model on the Semantic Grid facilitates international collaboration on investigations using such a model, and contributes to establishing rigorous working practices with agent-based models as part of good science in social simulation. The experimental workflow is described explicitly using an ontology, and a Semantic Grid service with a web interface implements the workflow. Users are able to compare their parameter settings and results, and relate their work with the model to wider scientific debate.Agent-Based Social Simulation, Experiments, Ontologies, Replication, Semantic Grid

    Technology assessment between risk, uncertainty and ignorance

    Get PDF
    The use of most if not all technologies is accompanied by negative side effects, While we may profit from today’s technologies, it is most often future generations who bear most risks. Risk analysis therefore becomes a delicate issue, because future risks often cannot be assigned a meaningful occurance probability. This paper argues that technology assessement most often deal with uncertainty and ignorance rather than risk when we include future generations into our ethical, political or juridal thinking. This has serious implications as probabilistic decision approaches are not applicable anymore. I contend that a virtue ethical approach in which dianoetic virtues play a central role may supplement a welfare based ethics in order to overcome the difficulties in dealing with uncertainty and ignorance in technology assessement

    The Bayesian boom: good thing or bad?

    Get PDF
    A series of high-profile critiques of Bayesian models of cognition have recently sparked controversy. These critiques question the contribution of rational, normative considerations in the study of cognition. The present article takes central claims from these critiques and evaluates them in light of specific models. Closer consideration of actual examples of Bayesian treatments of different cognitive phenomena allows one to defuse these critiques showing that they cannot be sustained across the diversity of applications of the Bayesian framework for cognitive modeling. More generally, there is nothing in the Bayesian framework that would inherently give rise to the deficits that these critiques perceive, suggesting they have been framed at the wrong level of generality. At the same time, the examples are used to demonstrate the different ways in which consideration of rationality uniquely benefits both theory and practice in the study of cognition

    Playing Fair: Rationality and Norm-guided Behavior in Games

    Get PDF
    There is robust experimental evidence that in the ultimatum game real players often prefer a fair allocation which seems to be in contrast to rational decision making. In this paper rational maximizing behavior as well as norm-guided fair behavior are two possible behavioral rules. It is argued that behavioral rules are adopted according to their expected success before the ultimatum game is played. Using the concept of behavioral equilibrium profiles it is shown that conditional to the information status the players may adopt the fair behavioral rule instead of maximizing. Furthermore, conditions are derived where maximizing and fair behavior are both parts of a behavioral equilibrium profile. Also the relation to the indirect evolutionary approach is discussed.Rationality, fairness, ultimatum game, behavioral equilibrium
    corecore