20,667 research outputs found

    Impliance: A Next Generation Information Management Appliance

    Full text link
    ably successful in building a large market and adapting to the changes of the last three decades, its impact on the broader market of information management is surprisingly limited. If we were to design an information management system from scratch, based upon today's requirements and hardware capabilities, would it look anything like today's database systems?" In this paper, we introduce Impliance, a next-generation information management system consisting of hardware and software components integrated to form an easy-to-administer appliance that can store, retrieve, and analyze all types of structured, semi-structured, and unstructured information. We first summarize the trends that will shape information management for the foreseeable future. Those trends imply three major requirements for Impliance: (1) to be able to store, manage, and uniformly query all data, not just structured records; (2) to be able to scale out as the volume of this data grows; and (3) to be simple and robust in operation. We then describe four key ideas that are uniquely combined in Impliance to address these requirements, namely the ideas of: (a) integrating software and off-the-shelf hardware into a generic information appliance; (b) automatically discovering, organizing, and managing all data - unstructured as well as structured - in a uniform way; (c) achieving scale-out by exploiting simple, massive parallel processing, and (d) virtualizing compute and storage resources to unify, simplify, and streamline the management of Impliance. Impliance is an ambitious, long-term effort to define simpler, more robust, and more scalable information systems for tomorrow's enterprises.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US

    Web Service Discovery in a Semantically Extended UDDI Registry: the Case of FUSION

    Get PDF
    Service-oriented computing is being adopted at an unprecedented rate, making the effectiveness of automated service discovery an increasingly important challenge. UDDI has emerged as a de facto industry standard and fundamental building block within SOA infrastructures. Nevertheless, conventional UDDI registries lack means to provide unambiguous, semantically rich representations of Web service capabilities, and the logic inference power required for facilitating automated service discovery. To overcome this important limitation, a number of approaches have been proposed towards augmenting Web service discovery with semantics. This paper discusses the benefits of semantically extending Web service descriptions and UDDI registries, and presents an overview of the approach put forward in project FUSION, towards semantically-enhanced publication and discovery of services based on SAWSDL

    CHORUS Deliverable 3.4: Vision Document

    Get PDF
    The goal of the CHORUS Vision Document is to create a high level vision on audio-visual search engines in order to give guidance to the future R&D work in this area and to highlight trends and challenges in this domain. The vision of CHORUS is strongly connected to the CHORUS Roadmap Document (D2.3). A concise document integrating the outcomes of the two deliverables will be prepared for the end of the project (NEM Summit)

    Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

    Get PDF
    The availability of sophisticated Web service discovery mechanisms is an essential prerequisite for increasing the levels of efficiency and automation in EAI. In this chapter, we present an approach for developing service registries building on the UDDI standard and offering semantically-enhanced publication and discovery capabilities in order to overcome some of the known limitations of conventional service registries. The approach aspires to promote efficiency in EAI in a number of ways, but primarily by automating the task of evaluating service integrability on the basis of the input and output messages that are defined in the Web service’s interface. The presented solution combines the use of three technology standards to meet its objectives: OWL-DL, for modelling service characteristics and performing fine-grained service matchmaking via DL reasoning, SAWSDL, for creating semantically annotated descriptions of service interfaces, and UDDI, for storing and retrieving syntactic and semantic information about services and service providers

    Situational Enterprise Services

    Get PDF
    The ability to rapidly find potential business partners as well as rapidly set up a collaborative business process is desirable in the face of market turbulence. Collaborative business processes are increasingly dependent on the integration of business information systems. Traditional linking of business processes has a large ad hoc character. Implementing situational enterprise services in an appropriate way will deliver the business more flexibility, adaptability and agility. Service-oriented architectures (SOA) are rapidly becoming the dominant computing paradigm. It is now being embraced by organizations everywhere as the key to business agility. Web 2.0 technologies such as AJAX on the other hand provide good user interactions for successful service discovery, selection, adaptation, invocation and service construction. They also balance automatic integration of services and human interactions, disconnecting content from presentation in the delivery of the service. Another Web technology, such as semantic Web, makes automatic service discovery, mediation and composition possible. Integrating SOA, Web 2.0 Technologies and Semantic Web into a service-oriented virtual enterprise connects business processes in a much more horizontal fashion. To be able run these services consistently across the enterprise, an enterprise infrastructure that provides enterprise architecture and security foundation is necessary. The world is constantly changing. So does the business environment. An agile enterprise needs to be able to quickly and cost-effectively change how it does business and who it does business with. Knowing, adapting to diffident situations is an important aspect of today’s business environment. The changes in an operating environment can happen implicitly and explicitly. The changes can be caused by different factors in the application domain. Changes can also happen for the purpose of organizing information in a better way. Changes can be further made according to the users' needs such as incorporating additional functionalities. Handling and managing diffident situations of service-oriented enterprises are important aspects of business environment. In the chapter, we will investigate how to apply new Web technologies to develop, deploy and executing enterprise services

    Web Service Discovery in the FUSION Semantic Registry

    Get PDF
    The UDDI specification was developed as an attempt to address the key challenge of effective Web service discovery and has become a widely adopted standard. However, the text-based indexing and search mechanism that UDDI registries offer does not suffice for expressing unambiguous and semantically rich representations of service capabilities, and cannot support the logic-based inference capacity required for facilitating automated service matchmaking. This paper provides an overview of the approach put forward in the FUSION project for overcoming this important limitation. Our solution combines SAWSDL-based service descriptions with service capability profiling based on OWL-DL, and automated matchmaking through DL reasoning in a semantically extended UDDI registry

    SpBase: the sea urchin genome database and web site

    Get PDF
    SpBase is a system of databases focused on the genomic information from sea urchins and related echinoderms. It is exposed to the public through a web site served with open source software (http://spbase.org/). The enterprise was undertaken to provide an easily used collection of information to directly support experimental work on these useful research models in cell and developmental biology. The information served from the databases emerges from the draft genomic sequence of the purple sea urchin, Strongylocentrotus purpuratus and includes sequence data and genomic resource descriptions for other members of the echinoderm clade which in total span 540 million years of evolutionary time. This version of the system contains two assemblies of the purple sea urchin genome, associated expressed sequences, gene annotations and accessory resources. Search mechanisms for the sequences and the gene annotations are provided. Because the system is maintained along with the Sea Urchin Genome resource, a database of sequenced clones is also provided

    Collaborative method to maintain business process models updated

    Get PDF
    Business process models are often forgotten after their creation and its representation is not usually updated. This appears to be negative as processes evolve over time. This paper discusses the issue of business process models maintenance through the definition of a collaborative method that creates interaction contexts enabling business actors to discuss about business processes, sharing business knowledge. The collaboration method extends the discussion about existing process representations to all stakeholders promoting their update. This collaborative method contributes to improve business process models, allowing updates based in change proposals and discussions, using a groupware tool that was developed. Four case studies were developed in real organizational environment. We came to the conclusion that the defined method and the developed tool can help organizations to maintain a business process model updated based on the inputs and consequent discussions taken by the organizational actors who participate in the processes.info:eu-repo/semantics/publishedVersio

    Publishing and sharing multi-dimensional image data with OMERO

    Get PDF
    Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO’s Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org
    corecore