2,044 research outputs found

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    Semi Automatic Segmentation of a Rat Brain Atlas

    Get PDF
    A common approach to segment an MRI dataset is to use a standard atlas to identify different regions of interest. Existing 2D atlases, prepared by freehand tracings of templates, are seldom complete for 3D volume segmentation. Although many of these atlases are prepared in graphics packages like Adobe Illustrator® (AI), which present the geometrical entities based on their mathematical description, the drawings are not numerically robust. This work presents an automatic conversion of graphical atlases suitable for further usage such as creation of a segmented 3D numerical atlas. The system begins with DXF (Drawing Exchange Format) files of individual atlas drawings. The drawing entities are mostly in cubic spline format. Each segment of the spline is reduced to polylines, which reduces the complexity of data. The system merges overlapping nodes and polylines to make the database of the drawing numerically integrated, i.e. each location within the drawing is referred by only one point, each line is uniquely defined by only two nodes, etc. Numerous integrity diagnostics are performed to eliminate duplicate or overlapping lines, extraneous markers, open-ended loops, etc. Numerically intact closed loops are formed using atlas labels as seed points. These loops specify the boundary and tissue type for each area. The final results preserve the original atlas with its 1272 different neuroanatomical regions which are complete, non-overlapping, contiguous sub-areas whose boundaries are composed of unique polyline

    Rapid Segmentation Techniques for Cardiac and Neuroimage Analysis

    Get PDF
    Recent technological advances in medical imaging have allowed for the quick acquisition of highly resolved data to aid in diagnosis and characterization of diseases or to guide interventions. In order to to be integrated into a clinical work flow, accurate and robust methods of analysis must be developed which manage this increase in data. Recent improvements in in- expensive commercially available graphics hardware and General-Purpose Programming on Graphics Processing Units (GPGPU) have allowed for many large scale data analysis problems to be addressed in meaningful time and will continue to as parallel computing technology improves. In this thesis we propose methods to tackle two clinically relevant image segmentation problems: a user-guided segmentation of myocardial scar from Late-Enhancement Magnetic Resonance Images (LE-MRI) and a multi-atlas segmentation pipeline to automatically segment and partition brain tissue from multi-channel MRI. Both methods are based on recent advances in computer vision, in particular max-flow optimization that aims at solving the segmentation problem in continuous space. This allows for (approximately) globally optimal solvers to be employed in multi-region segmentation problems, without the particular drawbacks of their discrete counterparts, graph cuts, which typically present with metrication artefacts. Max-flow solvers are generally able to produce robust results, but are known for being computationally expensive, especially with large datasets, such as volume images. Additionally, we propose two new deformable registration methods based on Gauss-Newton optimization and smooth the resulting deformation fields via total-variation regularization to guarantee the problem is mathematically well-posed. We compare the performance of these two methods against four highly ranked and well-known deformable registration methods on four publicly available databases and are able to demonstrate a highly accurate performance with low run times. The best performing variant is subsequently used in a multi-atlas segmentation pipeline for the segmentation of brain tissue and facilitates fast run times for this computationally expensive approach. All proposed methods are implemented using GPGPU for a substantial increase in computational performance and so facilitate deployment into clinical work flows. We evaluate all proposed algorithms in terms of run times, accuracy, repeatability and errors arising from user interactions and we demonstrate that these methods are able to outperform established methods. The presented approaches demonstrate high performance in comparison with established methods in terms of accuracy and repeatability while largely reducing run times due to the employment of GPU hardware

    Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images

    Full text link

    Multidimensional image analysis of cardiac function in MRI

    Get PDF
    Cardiac morphology is a key indicator of cardiac health. Important metrics that are currently in clinical use are left-ventricle cardiac ejection fraction, cardiac muscle (myocardium) mass, myocardium thickness and myocardium thickening over the cardiac cycle. Advances in imaging technologies have led to an increase in temporal and spatial resolution. Such an increase in data presents a laborious task for medical practitioners to analyse. In this thesis, measurement of the cardiac left-ventricle function is achieved by developing novel methods for the automatic segmentation of the left-ventricle blood-pool and the left ventricle myocardium boundaries. A preliminary challenge faced in this task is the removal of noise from Magnetic Resonance Imaging (MRI) data, which is addressed by using advanced data filtering procedures. Two mechanisms for left-ventricle segmentation are employed. Firstly segmentation of the left ventricle blood-pool for the measurement of ejection fraction is undertaken in the signal intensity domain. Utilising the high discrimination between blood and tissue, a novel methodology based on a statistical partitioning method offers success in localising and segmenting the blood pool of the left ventricle. From this initialisation, the estimation of the outer wall (epi-cardium) of the left ventricle can be achieved using gradient information and prior knowledge. Secondly, a more involved method for extracting the myocardium of the leftventricle is developed, that can better perform segmentation in higher dimensions. Spatial information is incorporated in the segmentation by employing a gradient-based boundary evolution. A level-set scheme is implemented and a novel formulation for the extraction of the cardiac muscle is introduced. Two surfaces, representing the inner and the outer boundaries of the left-ventricle, are simultaneously evolved using a coupling function and supervised with a probabilistic model of expertly assisted manual segmentations

    Cloud-Based Benchmarking of Medical Image Analysis

    Get PDF
    Medical imagin
    corecore