565 research outputs found

    A capacitive electrode with fast recovery feature

    Get PDF
    Capacitive electrodes (CEs) allow for acquiring biopotentials without galvanic contact, avoiding skin preparation and the use of electrolytic gel. The signal quality provided by present CEs is similar to that of standard wet electrodes, but they are more sensitive to electrostatic charge interference and motion artifacts, mainly when biopotentials are picked up through clothing and coupling capacitances are reduced to tens of picofarads. When artifacts are large enough to saturate the preamplifier, several seconds (up to tens) are needed to recover a proper baseline level, and during this period biopotential signals are irremediably lost. To reduce this problem, a CE that includes a fast-recovery (FR) circuit is proposed. It works directly on the coupling capacitor, recovering the amplifier from saturation while preserving ultra-high input impedance, as a CE requires. A prototype was built and tested acquiring ECG signals. Several experimental data are presented, which show that the proposed circuit significantly reduces record segment losses due to amplifier saturation when working in real environments.Fil: Spinelli, Enrique Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Haberman, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Garcia, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Guerrero, Federico Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentin

    Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors

    Get PDF
    Non-intrusive electrocardiogram (ECG) monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs) to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements.1145Ysciescopu

    Adaptive Noise Reduction Algorithm to Improve R Peak Detection in ECG Measured by Capacitive ECG Sensors

    Get PDF
    Electrocardiograms (ECGs) can be conveniently obtained using capacitive ECG sensors. However, motion noise in measured ECGs can degrade R peak detection. To reduce noise, properties of reference signal and ECG measured by the sensors are analyzed and a new method of active noise cancellation (ANC) is proposed in this study. In the proposed algorithm, the original ECG signal at QRS interval is regarded as impulsive noise because the adaptive filter updates its weight as if impulsive noise is added. As the proposed algorithm does not affect impulsive noise, the original signal is not reduced during ANC. Therefore, the proposed algorithm can conserve the power of the original signal within the QRS interval and reduce only the power of noise at other intervals. The proposed algorithm was verified through comparisons with recent research using data from both indoor and outdoor experiments. The proposed algorithm will benefit a noise reduction of noisy biomedical signal measured from sensors.11Ysciescopu

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF

    Assessment of trends in the cardiovascular system from time interval measurements using physiological signals obtained at the limbs

    Get PDF
    Cardiovascular diseases are an increasing source of concern in modern societies due to their increasing prevalence and high impact on the lives of many people. Monitoring cardiovascular parameters in ambulatory scenarios is an emerging approach that can provide better medical access to patients while decreasing the costs associated to the treatment of these diseases. This work analyzes systems and methods to measure time intervals between the electrocardiogram (ECG), impedance plethysmogram (IPG), and the ballistocardiogram (BCG), which can be obtained at the limbs in ambulatory scenarios using simple and cost-effective systems, to assess cardiovascular intervals of interest, such as the pulse arrival time (PAT), pulse transit time (PTT), or the pre-ejection period (PEP). The first section of this thesis analyzes the impact of the signal acquisition system on the uncertainty in timing measurements in order to establish the design specifications for systems intended for that purpose. The minimal requirements found are not very demanding yet some common signal acquisition systems do not fulfill all of them while other capabilities typically found in signal acquisition systems could be downgraded without worsening the timing uncertainty. This section is also devoted to the design of systems intended for timing measurements in ambulatory scenarios according to the specifications previously established. The systems presented have evolved from the current state-of-the-art and are designed for adequate performance in timing measurements with a minimal number of active components. The second section is focused on the measurement of time intervals from the IPG measured from limb to limb, which is a signal that until now has only been used to monitor heart rate. A model to estimate the contributions to the time events in the measured waveform of the different body segments along the current path from geometrical properties of the large arteries is proposed, and the simulation under blood pressure changes suggests that the signal is sensitive to changes in proximal sites of the current path rather than in distal sites. Experimental results show that the PAT to the hand-to-hand IPG, which is obtained from a novel four-electrode handheld system, is correlated to changes in the PEP whereas the PAT to the foot-to-foot IPG shows good performance in assessing changes in the femoral PAT. Therefore, limb-to-limb IPG measurements significantly increase the number of time intervals of interest that can be measured at the limbs since the signals deliver information from proximal sites complementary to that of other measurements typically performed at distal sites. The next section is devoted to the measurement of time intervals that involve different waves of the BCG obtained in a standing platform and whose origin is still under discussion. From the relative timing of other physiological signals, it is hypothesized that the IJ interval of the BCG is sensitive to variations in the PTT. Experimental results show that the BCG I wave is a better surrogate of the cardiac ejection time than the widely-used J wave, which is also supported by the good correlation found between the IJ interval and the aortic PTT. Finally, the novel time interval from the BCG I wave to the foot of the IPG measured between feet, which can be obtained from the same bathroom scale than the BCG, shows good performance in assessing the aortic PAT. The results presented reinforce the role of the BCG as a tool for ambulatory monitoring since the main time intervals targeted in this thesis can be obtained from the timing of its waves. Even though the methods described were tested in a small group of subjects, the results presented in this work show the feasibility and potential of several time interval measurements between the proposed signals that can be performed in ambulatory scenarios, provided the systems intended for that purpose fulfill some minimal design requirements.Les malalties cardiovasculars són una tema de preocupació creixent en societats modernes, degut a l’augment de la seva prevalença i l'elevat impacte en les vides dels pacients que les sofreixen. La mesura i monitoratge de paràmetres cardiovasculars en entorns ambulatoris és una pràctica emergent que facilita l’accés als serveis mèdics i permet reduir dràsticament els costos associats al tractament d'aquestes malalties. En aquest treball s’analitzen sistemes i mètodes per la mesura d’intervals temporals entre l’electrocardiograma (ECG), el pletismograma d’impedància (IPG) i el balistocardiograma (BCG), que es poden obtenir de les extremitats i en entorns ambulatoris a partir de sistemes de baix cost, per tal d’avaluar intervals cardiovasculars d’interès com el pulse arrival time (PAT), pulse transit time (PTT) o el pre-ejection period (PEP). En la primera secció d'aquesta tesi s’analitza l’impacte del sistema d’adquisició del senyal en la incertesa de mesures temporals, per tal d’establir els requeriments mínims que s’han de complir en entorns ambulatoris. Tot i que els valors obtinguts de l’anàlisi no són especialment exigents, alguns no són assolits en diversos sistemes habitualment utilitzats mentre que altres solen estar sobredimensionats i es podrien degradar sense augmentar la incertesa en mesures temporals. Aquesta secció també inclou el disseny i proposta de sistemes per la mesura d’intervals en entorns ambulatoris d’acord amb les especificacions anteriorment establertes, a partir de l’estat de l’art i amb l’objectiu de garantir un correcte funcionament en entorns ambulatoris amb un nombre mínim d’elements actius per reduir el cost i el consum. La segona secció es centra en la mesura d’intervals temporals a partir de l’IPG mesurat entre extremitats, que fins al moment només s’ha fet servir per mesurar el ritme cardíac. Es proposa un model per estimar la contribució de cada segment arterial per on circula el corrent a la forma d’ona obtinguda a partir de la geometria i propietats físiques de les artèries, i les simulacions suggereixen que la senyal entre extremitats és més sensible a canvis en arteries proximals que en distals. Els resultats experimentals mostren que el PAT al hand-to-hand IPG, obtingut a partir d’un innovador sistema handheld de quatre elèctrodes, està fortament correlacionat amb els canvis de PEP, mentre que el PAT al foot-to-foot IPG està correlat amb els canvis en PAT femoral. Conseqüentment, l’ILG entre extremitats augmenta de manera significativa els intervals d’interès que es poden obtenir en extremitats degut a que proporciona informació complementària a les mesures que habitualment s’hi realitzen. La tercera secció està dedicada a la mesura d’intervals que inclouen les ones del BCG vertical obtingut en plataformes, de les que encara se’n discuteix l’origen. A partir de la posició temporal relativa respecte altres ones fisiològiques, s’hipostatitza que l’interval IJ del BCG es sensible a variacions del PTT. Els resultats experimentals mostren que la ona I del BCG és un millor indicador de l’ejecció cardíaca que el pic J, tot i que aquest és el més utilitzat habitualment, degut a la bona correlació entre l’interval IJ i el PTT aòrtic. Finalment, es presenta un mètode alternatiu per la mesura del PTT aòrtic a partir de l’interval entre el pic I del BCG i el peu del foot-to-foot IPG, que es pot obtenir de la mateixa plataforma que el BCG i incrementa la robustesa de la mesura. Els resultats presentats reforcen el paper del BCG com a en mesures en entorns ambulatoris, ja que els principals intervals objectiu d’aquesta tesi es poden obtenir a partir de les seves ones. Tot i que els mètodes descrits han estat provats en grups petits de subjectes saludables, els resultats mostren la viabilitat i el potencial de diversos intervals temporals entre les senyals proposades que poden ésser realitzats en entorns ambulatoris, sempre que els sistemes emprats compleixin els requisits mínims de disseny.Postprint (published version

    Design, Fabrication and Experimental Validation of a Novel Dry-Contact Sensor for Measuring Electroencephalography Signals without Skin Preparation

    Get PDF
    In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes

    Graphene textile smart clothing for wearable cardiac monitoring

    Get PDF
    Wearable electronics is a rapidly growing field that recently started to introduce successful commercial products into the consumer electronics market. Employment of biopotential signals in wearable systems as either biofeedbacks or control commands are expected to revolutionize many technologies including point of care health monitoring systems, rehabilitation devices, human–computer/machine interfaces (HCI/HMIs), and brain–computer interfaces (BCIs). Since electrodes are regarded as a decisive part of such products, they have been studied for almost a decade now, resulting in the emergence of textile electrodes. This study reports on the synthesis and application of graphene nanotextiles for the development of wearable electrocardiography (ECG) sensors for personalized health monitoring applications. In this study, we show for the first time that the electrocardiogram was successfully obtained with graphene textiles placed on a single arm. The use of only one elastic armband, and an “all-textile-approach” facilitates seamless heart monitoring with maximum comfort to the wearer. The functionality of graphene textiles produced using dip coating and stencil printing techniques has been demonstrated by the non-invasive measurement of ECG signals, up to 98% excellent correlation with conventional pre-gelled, wet, silver/silver-chloride (Ag / AgCl) electrodes. Heart rate have been successfully determined with ECG signals obtained in different situations. The system-level integration and holistic design approach presented here will be effective for developing the latest technology in wearable heart monitoring devices

    A 122 fps, 1 MHz bandwidth multi-frequency wearable EIT belt featuring novel active electrode architecture for neonatal thorax vital sign monitoring

    Get PDF
    A highly integrated, wearable electrical impedance tomography (EIT) belt for neonatal thorax vital multiple sign monitoring is presented. The belt has sixteen active electrodes. Each has an application specific integrated circuit (ASIC) connected to an electrode. The ASIC contains a fully differential current driver, a high-performance instrumentation amplifier (IA), a digital controller and multiplexors. The wearable EIT belt features a new active electrode architecture that allows programmable flexible electrode current drive and voltage sense patterns under simple digital control. It provides intimate connections to the electrodes for the current drive and to the IA for direct differential voltage measurement providing superior common-mode rejection ratio. The ASIC was designed in a CMOS 0.35-μm high-voltage technology. The high specification EIT belt has an image frame rate of 122 fps, a wide operating bandwidth of 1 MHz and multi-frequency operation. It measures impedance with 98% accuracy and has less than 0.5 Ω and 1o variation across all possible channels. The image results confirmed the advantage of the new active electrode architecture and the benefit of wideband, multi-frequency EIT operation. The wearable EIT belt can also detect patient position and torso shape information using a MEMS sensor interfaced to each ASIC. The system successfully captured high quality lung respiration EIT images, breathing cycle and heart rate
    corecore