40 research outputs found

    MULTIMODALITY IN COMPUTER MEDIATED COMMUNICATION

    Get PDF
    2002/2003XVI Ciclo1974Versione digitalizzata della tesi di dottorato cartacea

    Statistical language modelling of dialogue material in the British national corpus.

    Get PDF
    Statistical language modelling may not only be used to uncover the patterns which underlie the composition of utterances and texts, but also to build practical language processing technology. Contemporary language applications in automatic speech recognition, sentence interpretation and even machine translation exploit statistical models of language. Spoken dialogue systems, where a human user interacts with a machine via a speech interface in order to get information, make bookings, complaints, etc., are example of such systems which are now technologically feasible. The majority of statistical language modelling studies to date have concentrated on written text material (or read versions thereof). However, it is well-known that dialogue is significantly different from written text in its lexical content and sentence structure. Furthermore, there are expected to be significant logical, thematic and lexical connections between successive turns within a dialogue, but "turns" are not generally meaningful in written text. There is therefore a need for statistical language modeling studies to be performed on dialogue, particularly with a longer-term aim to using such models in human-machine dialogue interfaces. In this thesis, I describe the studies I have carried out on statistically modelling the dialogue material within the British National Corpus (BNC) - a very large corpus of modern British English compiled during the 1990s. This thesis presents a general introductory survey of the field of automatic speech recognition. This is followed by a general introduction to some standard techniques of statistical language modelling which will be employed later in the thesis. The structure of dialogue is discussed using some perspectives from linguistic theory, and reviews some previous approaches (not necessarily statistical) to modelling dialogue. Then a qualitative description is given of the BNC and the dialogue data within it, together with some descriptive statistics relating to it and results from constructing simple trigram language models for both dialogue and text data. The main part of the thesis describes experiments on the application of statistical language models based on word caches, word "trigger" pairs, and turn clustering to the dialogue data. Several different approaches are used for each type of model. An analysis of the strengths and weaknesses of these techniques is then presented. The results of the experiments lead to a better understanding of how statistical language modelling might be applied to dialogue for the benefit of future language technologies

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Acquiring and Maintaining Knowledge by Natural Multimodal Dialog

    Get PDF

    Designing Statistical Language Learners: Experiments on Noun Compounds

    Full text link
    The goal of this thesis is to advance the exploration of the statistical language learning design space. In pursuit of that goal, the thesis makes two main theoretical contributions: (i) it identifies a new class of designs by specifying an architecture for natural language analysis in which probabilities are given to semantic forms rather than to more superficial linguistic elements; and (ii) it explores the development of a mathematical theory to predict the expected accuracy of statistical language learning systems in terms of the volume of data used to train them. The theoretical work is illustrated by applying statistical language learning designs to the analysis of noun compounds. Both syntactic and semantic analysis of noun compounds are attempted using the proposed architecture. Empirical comparisons demonstrate that the proposed syntactic model is significantly better than those previously suggested, approaching the performance of human judges on the same task, and that the proposed semantic model, the first statistical approach to this problem, exhibits significantly better accuracy than the baseline strategy. These results suggest that the new class of designs identified is a promising one. The experiments also serve to highlight the need for a widely applicable theory of data requirements.Comment: PhD thesis (Macquarie University, Sydney; December 1995), LaTeX source, xii+214 page

    International Workshop on Description Logics : Bonn, May 28/29, 1994

    Get PDF
    This collection of papers forms the permanent record of the 1994 Description Logic Workshop, that was held at the Gustav Stresemann Institut in Bonn, Germany on 28 and 29 May 1994, immediately after the Fourth International Conference on Principles of Knowledge Representation and Reasoning. The workshop was set up to be as informal as possible, so this collection cannot hope to capture the discussions associated with the workshop. However, we hope that it will serve to remind participants of their discussion at the workshop, and provide non-participants with indications of the topics that were discussed at the workshop. The workshop consisted of seven regular sessions and one panel session. Each regular session had about four short presentations on a single theme, but also had considerable time reserved for discussion. The themes of the sessions were Foundations of Description Logics, Architecture of Description Logics and Description Logic Systems, Language Extensions, Expanding Description Logics, General Applications of Description Logics, Natural Language Applications of Description Logics, Connections between Description Logics and Databases, and the Future of Description Logics and Description Logic Systems. The session on Foundations of Description Logics concentrated on computational properties of description logics, correspondences between description logics and other formalisms, and on semantics of description logics, Similarly, there is discussion on how to develop tractable desription logics, for some notion of tractable, and whether it is useful to worry about achieving tractability at all. Several of the participants argued in favour of a very expressive description logic. This obviously precludes tractability or even decidability of complete reasoning. Klaus Schild proposed that for some purposes one could employ "model checking" (i .e., a closed world assumption) instead of "theorem proving," and has shown that this is still tractable for very large languages. Maurizio Lenzerini\u27s opinion was that it is important to have decidable languages. Tractability cannot be achieved in several application areas because there one needs very expressive constructs: e.g., axioms, complex role constructors, and cycles with fixed-point semantics. For Bob MacGregor, not even decidability is an issue since he claims that Loom\u27s incomplete reasoner is sufficient for his applications. The discussion addressed the question of whether there is still need for foundations, and whether the work on foundation done until now really solved the problems that the designers of early DL systems had. Both questions were mostly answered in the affirmative, with the caveat that new research on foundations should make sure that it is concerned with "real" problems, and not just generates new problems. In the session on Architecture of Description Logics and Description Logic Systems the participants considered different ways of putting together description logics and description logic systems. One way of doing this is to have a different kind of inference strategy for description logics, such as one based on intuitionistic logics or one based directly on rules of inference-thus allowing variant systems. Another way of modifying description logic systems is to divide them up in different ways, such as making a terminology consist of a schema portion and a view portion. Some discussion in this session concerned whether architectures should be influenced by application areas, or even by particular applications. There was considerable discussion at the workshop on how Description Logics should be extended or expanded to make them more useful. There are several methods to do this. The first is to extend the language of descriptions, e.g ., to represent n-ary relations, temporal information, or whole-part relationships, all of which were discussed at the workshop. The second is to add in another kind of reasoning, such as default reasoning, while still keeping the general framework of description logic reasoning. The third is to incorporate descriptions or description-like constructs in a larger reasoner, such as a first order reasoner. This was the approach taken in OMEGA and is the approach being taken in the Loom project. There have been many extensions of the first two kinds proposed for description logics, including several presented at the workshop. One quest ion discussed at the workshop was whether these extensions fit in well with the philosophy of description logic. Another question was whether the presence of many proposals for extensions means that description logics are easy to expand, or that description logics are inadequate representation formalisms? The general consensus was that description logics adequately capture a certain kind of core reasoning and that they lend themselves to incorporation with other kinds of reasoning. Care must be taken, however, to keep the extended versions true to the goals of description logics. The sessions on Applications of Description Logics had presentations on applications of description logics in various areas, including configuration, tutoring, natural language processing, and domain modeling. Most of these applications are research applications, funded by government research programs. There was discussion of what is needed to have more fielded applications of description logics. The session on Connections between Description Logics and Databases considered three kinds of connections between Description Logics and Databases: 1. using Description Logics for expressing database schemas, including local schemas, integrated schemas, and views, integrity constraints, and queries; 2. using Description Logic reasoning for various database-related reasoning, including schema integration and validation, and query optimization, and query validation and organization; and 3. making Description Logic reasoners more like Database Mangagement Systems via optimization. All three of these connections are being actively investigated by the description logic community. The panel session on the Future of Description Logics and Description Logic Systems discussed where the future of description logics will lie. There seems to be a consensus that description logics must forge tighter connections with other formalisms, such as databases or object-oriented systems. In this way, perhaps, description logics will find more real applications

    International Workshop on Description Logics : Bonn, May 28/29, 1994

    Get PDF
    This collection of papers forms the permanent record of the 1994 Description Logic Workshop, that was held at the Gustav Stresemann Institut in Bonn, Germany on 28 and 29 May 1994, immediately after the Fourth International Conference on Principles of Knowledge Representation and Reasoning. The workshop was set up to be as informal as possible, so this collection cannot hope to capture the discussions associated with the workshop. However, we hope that it will serve to remind participants of their discussion at the workshop, and provide non-participants with indications of the topics that were discussed at the workshop. The workshop consisted of seven regular sessions and one panel session. Each regular session had about four short presentations on a single theme, but also had considerable time reserved for discussion. The themes of the sessions were Foundations of Description Logics, Architecture of Description Logics and Description Logic Systems, Language Extensions, Expanding Description Logics, General Applications of Description Logics, Natural Language Applications of Description Logics, Connections between Description Logics and Databases, and the Future of Description Logics and Description Logic Systems. The session on Foundations of Description Logics concentrated on computational properties of description logics, correspondences between description logics and other formalisms, and on semantics of description logics, Similarly, there is discussion on how to develop tractable desription logics, for some notion of tractable, and whether it is useful to worry about achieving tractability at all. Several of the participants argued in favour of a very expressive description logic. This obviously precludes tractability or even decidability of complete reasoning. Klaus Schild proposed that for some purposes one could employ "model checking" (i .e., a closed world assumption) instead of "theorem proving," and has shown that this is still tractable for very large languages. Maurizio Lenzerini's opinion was that it is important to have decidable languages. Tractability cannot be achieved in several application areas because there one needs very expressive constructs: e.g., axioms, complex role constructors, and cycles with fixed-point semantics. For Bob MacGregor, not even decidability is an issue since he claims that Loom's incomplete reasoner is sufficient for his applications. The discussion addressed the question of whether there is still need for foundations, and whether the work on foundation done until now really solved the problems that the designers of early DL systems had. Both questions were mostly answered in the affirmative, with the caveat that new research on foundations should make sure that it is concerned with "real" problems, and not just generates new problems. In the session on Architecture of Description Logics and Description Logic Systems the participants considered different ways of putting together description logics and description logic systems. One way of doing this is to have a different kind of inference strategy for description logics, such as one based on intuitionistic logics or one based directly on rules of inference-thus allowing variant systems. Another way of modifying description logic systems is to divide them up in different ways, such as making a terminology consist of a schema portion and a view portion. Some discussion in this session concerned whether architectures should be influenced by application areas, or even by particular applications. There was considerable discussion at the workshop on how Description Logics should be extended or expanded to make them more useful. There are several methods to do this. The first is to extend the language of descriptions, e.g ., to represent n-ary relations, temporal information, or whole-part relationships, all of which were discussed at the workshop. The second is to add in another kind of reasoning, such as default reasoning, while still keeping the general framework of description logic reasoning. The third is to incorporate descriptions or description-like constructs in a larger reasoner, such as a first order reasoner. This was the approach taken in OMEGA and is the approach being taken in the Loom project. There have been many extensions of the first two kinds proposed for description logics, including several presented at the workshop. One quest ion discussed at the workshop was whether these extensions fit in well with the philosophy of description logic. Another question was whether the presence of many proposals for extensions means that description logics are easy to expand, or that description logics are inadequate representation formalisms? The general consensus was that description logics adequately capture a certain kind of core reasoning and that they lend themselves to incorporation with other kinds of reasoning. Care must be taken, however, to keep the extended versions true to the goals of description logics. The sessions on Applications of Description Logics had presentations on applications of description logics in various areas, including configuration, tutoring, natural language processing, and domain modeling. Most of these applications are research applications, funded by government research programs. There was discussion of what is needed to have more fielded applications of description logics. The session on Connections between Description Logics and Databases considered three kinds of connections between Description Logics and Databases: 1. using Description Logics for expressing database schemas, including local schemas, integrated schemas, and views, integrity constraints, and queries; 2. using Description Logic reasoning for various database-related reasoning, including schema integration and validation, and query optimization, and query validation and organization; and 3. making Description Logic reasoners more like Database Mangagement Systems via optimization. All three of these connections are being actively investigated by the description logic community. The panel session on the Future of Description Logics and Description Logic Systems discussed where the future of description logics will lie. There seems to be a consensus that description logics must forge tighter connections with other formalisms, such as databases or object-oriented systems. In this way, perhaps, description logics will find more real applications

    International Workshop on Description Logics : Bonn, May 28/29, 1994

    Get PDF
    This collection of papers forms the permanent record of the 1994 Description Logic Workshop, that was held at the Gustav Stresemann Institut in Bonn, Germany on 28 and 29 May 1994, immediately after the Fourth International Conference on Principles of Knowledge Representation and Reasoning. The workshop was set up to be as informal as possible, so this collection cannot hope to capture the discussions associated with the workshop. However, we hope that it will serve to remind participants of their discussion at the workshop, and provide non-participants with indications of the topics that were discussed at the workshop. The workshop consisted of seven regular sessions and one panel session. Each regular session had about four short presentations on a single theme, but also had considerable time reserved for discussion. The themes of the sessions were Foundations of Description Logics, Architecture of Description Logics and Description Logic Systems, Language Extensions, Expanding Description Logics, General Applications of Description Logics, Natural Language Applications of Description Logics, Connections between Description Logics and Databases, and the Future of Description Logics and Description Logic Systems. The session on Foundations of Description Logics concentrated on computational properties of description logics, correspondences between description logics and other formalisms, and on semantics of description logics, Similarly, there is discussion on how to develop tractable desription logics, for some notion of tractable, and whether it is useful to worry about achieving tractability at all. Several of the participants argued in favour of a very expressive description logic. This obviously precludes tractability or even decidability of complete reasoning. Klaus Schild proposed that for some purposes one could employ "model checking" (i .e., a closed world assumption) instead of "theorem proving," and has shown that this is still tractable for very large languages. Maurizio Lenzerini's opinion was that it is important to have decidable languages. Tractability cannot be achieved in several application areas because there one needs very expressive constructs: e.g., axioms, complex role constructors, and cycles with fixed-point semantics. For Bob MacGregor, not even decidability is an issue since he claims that Loom's incomplete reasoner is sufficient for his applications. The discussion addressed the question of whether there is still need for foundations, and whether the work on foundation done until now really solved the problems that the designers of early DL systems had. Both questions were mostly answered in the affirmative, with the caveat that new research on foundations should make sure that it is concerned with "real" problems, and not just generates new problems. In the session on Architecture of Description Logics and Description Logic Systems the participants considered different ways of putting together description logics and description logic systems. One way of doing this is to have a different kind of inference strategy for description logics, such as one based on intuitionistic logics or one based directly on rules of inference-thus allowing variant systems. Another way of modifying description logic systems is to divide them up in different ways, such as making a terminology consist of a schema portion and a view portion. Some discussion in this session concerned whether architectures should be influenced by application areas, or even by particular applications. There was considerable discussion at the workshop on how Description Logics should be extended or expanded to make them more useful. There are several methods to do this. The first is to extend the language of descriptions, e.g ., to represent n-ary relations, temporal information, or whole-part relationships, all of which were discussed at the workshop. The second is to add in another kind of reasoning, such as default reasoning, while still keeping the general framework of description logic reasoning. The third is to incorporate descriptions or description-like constructs in a larger reasoner, such as a first order reasoner. This was the approach taken in OMEGA and is the approach being taken in the Loom project. There have been many extensions of the first two kinds proposed for description logics, including several presented at the workshop. One quest ion discussed at the workshop was whether these extensions fit in well with the philosophy of description logic. Another question was whether the presence of many proposals for extensions means that description logics are easy to expand, or that description logics are inadequate representation formalisms? The general consensus was that description logics adequately capture a certain kind of core reasoning and that they lend themselves to incorporation with other kinds of reasoning. Care must be taken, however, to keep the extended versions true to the goals of description logics. The sessions on Applications of Description Logics had presentations on applications of description logics in various areas, including configuration, tutoring, natural language processing, and domain modeling. Most of these applications are research applications, funded by government research programs. There was discussion of what is needed to have more fielded applications of description logics. The session on Connections between Description Logics and Databases considered three kinds of connections between Description Logics and Databases: 1. using Description Logics for expressing database schemas, including local schemas, integrated schemas, and views, integrity constraints, and queries; 2. using Description Logic reasoning for various database-related reasoning, including schema integration and validation, and query optimization, and query validation and organization; and 3. making Description Logic reasoners more like Database Mangagement Systems via optimization. All three of these connections are being actively investigated by the description logic community. The panel session on the Future of Description Logics and Description Logic Systems discussed where the future of description logics will lie. There seems to be a consensus that description logics must forge tighter connections with other formalisms, such as databases or object-oriented systems. In this way, perhaps, description logics will find more real applications

    Designing Embodied Interactive Software Agents for E-Learning: Principles, Components, and Roles

    Get PDF
    Embodied interactive software agents are complex autonomous, adaptive, and social software systems with a digital embodiment that enables them to act on and react to other entities (users, objects, and other agents) in their environment through bodily actions, which include the use of verbal and non-verbal communicative behaviors in face-to-face interactions with the user. These agents have been developed for various roles in different application domains, in which they perform tasks that have been assigned to them by their developers or delegated to them by their users or by other agents. In computer-assisted learning, embodied interactive pedagogical software agents have the general task to promote human learning by working with students (and other agents) in computer-based learning environments, among them e-learning platforms based on Internet technologies, such as the Virtual Linguistics Campus (www.linguistics-online.com). In these environments, pedagogical agents provide contextualized, qualified, personalized, and timely assistance, cooperation, instruction, motivation, and services for both individual learners and groups of learners. This thesis develops a comprehensive, multidisciplinary, and user-oriented view of the design of embodied interactive pedagogical software agents, which integrates theoretical and practical insights from various academic and other fields. The research intends to contribute to the scientific understanding of issues, methods, theories, and technologies that are involved in the design, implementation, and evaluation of embodied interactive software agents for different roles in e-learning and other areas. For developers, the thesis provides sixteen basic principles (Added Value, Perceptible Qualities, Balanced Design, Coherence, Consistency, Completeness, Comprehensibility, Individuality, Variability, Communicative Ability, Modularity, Teamwork, Participatory Design, Role Awareness, Cultural Awareness, and Relationship Building) plus a large number of specific guidelines for the design of embodied interactive software agents and their components. Furthermore, it offers critical reviews of theories, concepts, approaches, and technologies from different areas and disciplines that are relevant to agent design. Finally, it discusses three pedagogical agent roles (virtual native speaker, coach, and peer) in the scenario of the linguistic fieldwork classes on the Virtual Linguistics Campus and presents detailed considerations for the design of an agent for one of these roles (the virtual native speaker)
    corecore