420 research outputs found

    Stochastic Optimization Models for Perishable Products

    Get PDF
    For many years, researchers have focused on developing optimization models to design and manage supply chains. These models have helped companies in different industries to minimize costs, maximize performance while balancing their social and environmental impacts. There is an increasing interest in developing models which optimize supply chain decisions of perishable products. This is mainly because many of the products we use today are perishable, managing their inventory is challenging due to their short shelf life, and out-dated products become waste. Therefore, these supply chain decisions impact profitability and sustainability of companies and the quality of the environment. Perishable products wastage is inevitable when demand is not known beforehand. A number of models in the literature use simulation and probabilistic models to capture supply chain uncertainties. However, when demand distribution cannot be described using standard distributions, probabilistic models are not effective. In this case, using stochastic optimization methods is preferred over obtaining approximate inventory management policies through simulation. This dissertation proposes models to help businesses and non-prot organizations make inventory replenishment, pricing and transportation decisions that improve the performance of their system. These models focus on perishable products which either deteriorate over time or have a fixed shelf life. The demand and/or supply for these products and/or, the remaining shelf life are stochastic. Stochastic optimization models, including a two-stage stochastic mixed integer linear program, a two-stage stochastic mixed integer non linear program, and a chance constraint program are proposed to capture uncertainties. The objective is to minimize the total replenishment costs which impact prots and service rate. These models are motivated by applications in the vaccine distribution supply chain, and other supply chains used to distribute perishable products. This dissertation also focuses on developing solution algorithms to solve the proposed optimization models. The computational complexity of these models motivated the development of extensions to standard models used to solve stochastic optimization problems. These algorithms use sample average approximation (SAA) to represent uncertainty. The algorithms proposed are extensions of the stochastic Benders decomposition algorithm, the L-shaped method (LS). These extensions use Gomory mixed integer cuts, mixed-integer rounding cuts, and piecewise linear relaxation of bilinear terms. These extensions lead to the development of linear approximations of the models developed. Computational results reveal that the solution approach presented here outperforms the standard LS method. Finally, this dissertation develops case studies using real-life data from the Demographic Health Surveys in Niger and Bangladesh to build predictive models to meet requirements for various childhood immunization vaccines. The results of this study provide support tools for policymakers to design vaccine distribution networks

    Optimizing vaccine procurement for affordability and profits

    Get PDF
    This thesis presents methods to increase savings in the global vaccine market without compromising its sustainability. Considering a hypothetically coordinated vaccine market (HCVM), where one or more coordinating entities are responsible for negotiating quantities and prices of vaccines on behalf of countries with different purchasing powers, this work explores four different and complementary issues related to market configurations impacting global affordability and profits: (1) the level of cooperation among coordinating entities; (2) optimal country assignment to coordinating entities; (3) benefits in procuring vaccines through tenders of formularies rather than purchasing doses individually; and (4) the value of a dollar saved in different countries. Additionally, these studies incorporate prescriptive and descriptive analytics with economic theory exploring the incentives that could bring the global vaccine market closer to the HCVM. The findings presented in this thesis contribute both to the literature and to the sustainability of the global vaccine market with specific recommendations to improve affordability for low-income countries with minimal impact to other market segments or to the vaccine producers

    Incorporating the Centers for Disease Control and Prevention into Vaccine Pricing Models

    Get PDF
    The American vaccine pricing market has many actors, making it a complex system to model. Because of this, previous papers have chosen to model only vaccine manufacturers while leaving out the government. However, the government is also an important actor in the market, since it buys over half of vaccines produced. In this work, we aim to introduce the government into vaccine pricing models to better recommend pricing strategies to the Centers for Disease Control and Prevention

    A novel approach to evaluating the UK childhood immunisation schedule: estimating the effective coverage vector across the entire vaccine programme

    Get PDF
    BACKGROUND: The availability of new vaccines can prompt policy makers to consider changes to the routine childhood immunisation programme in the UK. Alterations to one aspect of the schedule may have implications for other areas of the programme (e.g. adding more injections could reduce uptake of vaccines featuring later in the schedule). Colleagues at the Department of Health (DH) in the UK therefore wanted to know whether assessing the impact across the entire programme of a proposed change to the UK schedule could lead to different decisions than those made on the current case-by-case basis. This work is a first step towards addressing this question. METHODS: A novel framework for estimating the effective coverage against all of the diseases within a vaccination programme was developed. The framework was applied to the current (August 2015) UK childhood immunisation programme, plausible extensions to it in the foreseeable future (introducing vaccination against Meningitis B and/or Hepatitis B) and a "what-if" scenario regarding a Hepatitis B vaccine scare that was developed in close collaboration with DH. RESULTS: Our applications of the framework demonstrate that a programme-view of hypothetical changes to the schedule is important. For example, we show how introducing Hepatitis B vaccination could negatively impact aspects of the current programme by reducing uptake of vaccines featuring later in the schedule, and illustrate that the potential benefits of introducing any new vaccine are susceptible to behaviour changes affecting uptake (e.g. a vaccine scare). We show how it may be useful to consider the potential benefits and scheduling needs of all vaccinations on the horizon of interest rather than those of an individual vaccine in isolation, e.g. how introducing Meningitis B vaccination could saturate the early (2-month) visit, thereby potentially restricting scheduling options for Hepatitis B immunisation should it be introduced to the programme in the future. CONCLUSIONS: Our results demonstrate the potential benefit of considering the programme-wide impact of changes to an immunisation schedule, and our framework is an important step in the development of a means for systematically doing so

    Literature Review - the vaccine supply chain

    Get PDF
    Vaccination is one of the most effective ways to prevent the outbreak of an infectious disease. This medical intervention also brings about many logistical quest

    Vaccine Procurement in a Time-Indexed Model with Quantity-Based Discounts

    Get PDF
    Vaccination is hailed as one of the greatest scientific achievements of the past century. However, affordability and accessibility prevent low-income countries from realizing the full benefit of immunization. This study applies operations research methods to a hypothetically coordinated global vaccine market with quantity-based discounts to minimize procurement and holding costs while ensuring investment recovery of manufacturers. The effects on affordability of fixed-costs, holding costs, cold-chain capacity, and tender length (i.e. the maximum number of years ahead markets are willing to order supply from producers) are analyzed for each income-based segment of the global market. Experimental results show that increases in both tender length and cold-chain capacity have a significant positive influence on affordability for most market segments, especially the low-income segments. The results reported give insights into how vaccine procurement decisions could be structured at each income level to improve affordability of the buyers while ensuring profitability of the producers

    Literature review: The vaccine supply chain

    Get PDF
    Vaccination is one of the most effective ways to prevent and/or control the outbreak of infectious diseases. This medical intervention also brings about many logistical questions. In the past years, the Operations Research/Operations Management community has shown a growing interest in the logistical aspects of vaccination. However, publications on vaccine logistics often focus on one specific logistical aspect. A broader framework is needed so that open research questions can be identified more easily and contributions are not overlooked.In this literature review, we combine the priorities of the World Health Organization for creating a flexible and robust vaccine supply chain with an Operations Research/Operations Management supply chain perspective. We propose a classification for the literature on vaccine logistics to structure this relatively new field, and identify promising research directions. We classify the literature into the following four components: (1) product, (2) production, (3) allocation, and (4) distribution. Within the supply chain classification, we analyze the decision problems for existing outbreaks versus sudden outbreaks and developing countries versus developed countries. We identify unique characteristics of the vaccine supply chain: high uncertainty in both supply and demand; misalignment of objectives and decentralized decision making between supplier, public health organization and end customer; complex political decisions concerning allocation and the crucial

    Optimal Design and Operation of WHO-EPI Vaccine Distribution Chains

    Get PDF
    Vaccination has been proven to be the most effective method to prevent infectious diseases and in 1974 the World Health Organization (WHO) established the Expanded Programme on Immunization (EPI) to provide universal access to all important vaccines for all children, with a special focus on underserved low- and middle-income countries. However, there are still roughly 20 million infants worldwide who lack access to routine immunization services and remain at risk, and millions of additional deaths could be avoided if global vaccination coverage could improve. The broad goal of this research is to optimize the design and operation of the WHO-EPI vaccine distribution chain in these underserved low- and middle-income countries. We first present a network design problem for a general WHO-EPI vaccine distribution network by developing a mathematical model that formulates the network design problem as a mixed integer program (MIP). We then present three algorithms for typical problems that are too large to be solved using commercial MIP software. We test the algorithms using data derived from four different countries in sub-Saharan Africa and show that with our final algorithm, high-quality solutions are obtained for even the largest problems within a few minutes. We then discuss the problem of outreach to remote population centers when resources are limited and direct clinic service is unavailable. A set of these remote population centers is chosen, and over an appropriate planning period, teams of clinicians and support personnel are sent from a depot to set up mobile clinics at these locations to vaccinate people there and in the immediate surrounding area. We formulate the problem of designing outreach efforts as an MIP that is a combination of a set covering problem and a vehicle routing problem. We then incorporate uncertainty to study the robustness of the worst-case solutions and the related issue of the value of information. Finally, we study a variation of the outreach problem that combines Set Covering and the Traveling Salesmen Problem and provides an MIP formulation to solve the problem. Motivated by applications where the optimal policy needs to be updated on a regular basis and where repetitively solving this via MIP can be computationally expensive, we propose a machine learning approach to effectively deal with this problem by providing an opportunity to learn from historical optimal solutions that are derived from the MIP formulation. We also present a case study on outreach operations and provide numerical results. Our results show that while the novel machine learning based mechanism generates high quality solution repeatedly for problems that resemble instances in the training set, it does not generalize as well on a different set of optimization problems. These mixed results indicate that there are promising research opportunities to use machine learning to achieve tractability and scalability
    corecore