19 research outputs found

    The computational complexity of the Chow form

    Full text link
    We present a bounded probability algorithm for the computation of the Chow forms of the equidimensional components of an algebraic variety. Its complexity is polynomial in the length and in the geometric degree of the input equation system defining the variety. In particular, it provides an alternative algorithm for the equidimensional decomposition of a variety. As an application we obtain an algorithm for the computation of a subclass of sparse resultants, whose complexity is polynomial in the dimension and the volume of the input set of exponents. As a further application, we derive an algorithm for the computation of the (unique) solution of a generic over-determined equation system.Comment: 60 pages, Latex2

    Cache-Friendly, Modular and Parallel Schemes For Computing Subresultant Chains

    Get PDF
    The RegularChains library in Maple offers a collection of commands for solving polynomial systems symbolically with taking advantage of the theory of regular chains. The primary goal of this thesis is algorithmic contributions, in particular, to high-performance computational schemes for subresultant chains and underlying routines to extend that of RegularChains in a C/C++ open-source library. Subresultants are one of the most fundamental tools in computer algebra. They are at the core of numerous algorithms including, but not limited to, polynomial GCD computations, polynomial system solving, and symbolic integration. When the subresultant chain of two polynomials is involved in a client procedure, not all polynomials of the chain, or not all coefficients of a given subresultant, may be needed. Based on that observation, we design so-called speculative and caching strategies which yield great performance improvements within our polynomial system solver. Our implementation of these techniques has been highly optimized. We have implemented optimized core arithmetic routines and multithreaded subresultant algorithms for univariate, bivariate and multivariate polynomials. We further examine memory access patterns and data locality for computing subresultants of multivariate polynomials, and study different optimization techniques for the fraction-free LU decomposition algorithm to compute subresultants based on determinant of Bezout matrices. Our code is publicly available at www.bpaslib.org as part of the Basic Polynomial Algebra Subprograms (BPAS) library that is mainly written in C, with concurrency support and user interfaces written in C++

    TR-2013009: Algebraic Algorithms

    Full text link

    Computer Science for Continuous Data:Survey, Vision, Theory, and Practice of a Computer Analysis System

    Get PDF
    Building on George Boole's work, Logic provides a rigorous foundation for the powerful tools in Computer Science that underlie nowadays ubiquitous processing of discrete data, such as strings or graphs. Concerning continuous data, already Alan Turing had applied "his" machines to formalize and study the processing of real numbers: an aspect of his oeuvre that we transform from theory to practice.The present essay surveys the state of the art and envisions the future of Computer Science for continuous data: natively, beyond brute-force discretization, based on and guided by and extending classical discrete Computer Science, as bridge between Pure and Applied Mathematics

    Bivariate systems and topology of plane curves: algebraic and numerical methods

    Get PDF
    The work presented in this thesis belongs to the domain of non-linear computational geometry in lowdimension. More precisely it focuses on solving bivariate systems and computing the topology of curvesin the plane. When the input is given by polynomials, the natural tools come from computer algebra.Our contributions are algorithms proven efficient in a deterministic or a Las Vegas settings together witha practical efficient software for topology certified drawing of a plane algebraic curve. When the input isnot restricted to be polynomials but given by interval functions, we design algorithms based on certifiednumerical approches using subdivision and interval arithmetic. The input is then required to fulfill somegeneric assumptions and our algorithms are certified in the sense that they terminate if and only if theassumptions are satisfied.Le travail présenté dans cette thèse appartient au domaine de la géométrie computationnelle non linéaireen petite dimension. Plus précisément, il se concentre sur la résolution de systèmes bivariés et le calcul dela topologie des courbes dans le plan. Lorsque l’entrée est donnée par des polynômes, les outils naturelsproviennent du calcul formel. Nos contributions sont des algorithmes dont l’efficacité a été prouvée dansun cadre déterministe ou Las Vegas, ainsi qu’un logiciel efficace pour le dessin certifié de la topologied’une courbe algébrique plane. Lorsque les données d’entrée ne sont pas limitées aux polynômes maissont données par des fonctions d’intervalles, nous concevons des algorithmes basés sur des approchesnumériques certifiées utilisant la subdivision et l’arithmétique d’intervalles. L’entrée doit alors satisfairecertaines hypothèses génériques et nos algorithmes sont certifiés dans le sens où ils se terminent si etseulement si les hypothèses sont satisfaites

    Using implicit equations of parametric curves and surfaces without computing them: Polynomial algebra by values

    Get PDF
    The availability of the implicit equation of a plane curve or of a 3D surface can be very useful in order to solve many geometric problems involving the considered curve or surface: for example, when dealing with the point position problem or answering intersection questions. On the other hand, it is well known that in most cases, even for moderate degrees, the implicit equation is either difficult to compute or, if computed, the high degree and the big size of the coefficients makes extremely difficult its use in practice. We will show that, for several problems involving plane curves, 3D surfaces and some of their constructions (for example, offsets), it is possible to use the implicit equation (or, more precisely, its properties) without needing to explicitly determine it. We replace the computation of the implicit equation with the evaluation of the considered parameterizations in a set of points. We then translate the geometric problem in hand, into one or several generalized eigenvalue problems on matrix pencils (depending again on several evaluations of the considered parameterizations). This is the so-called “polynomial algebra by values” approach where the huge polynomial equations coming from Elimination Theory (e.g., using resultants) are replaced by big structured and sparse numerical matrices. For these matrices there are well-known numerical techniques allowing to provide the results we need to answer the geometric questions on the considered curves and surfaces

    Geometric algorithms for algebraic curves and surfaces

    Get PDF
    This work presents novel geometric algorithms dealing with algebraic curves and surfaces of arbitrary degree. These algorithms are exact and complete — they return the mathematically true result for all input instances. Efficiency is achieved by cutting back expensive symbolic computation and favoring combinatorial and adaptive numerical methods instead, without spoiling exactness in the overall result. We present an algorithm for computing planar arrangements induced by real algebraic curves. We show its efficiency both in theory by a complexity analysis, as well as in practice by experimental comparison with related methods. For the latter, our solution has been implemented in the context of the Cgal library. The results show that it constitutes the best current exact implementation available for arrangements as well as for the related problem of computing the topology of one algebraic curve. The algorithm is also applied to related problems, such as arrangements of rotated curves, and arrangments embedded on a parameterized surface. In R3, we propose a new method to compute an isotopic triangulation of an algebraic surface. This triangulation is based on a stratification of the surface, which reveals topological and geometric information. Our implementation is the first for this problem that makes consequent use of numerical methods, and still yields the exact topology of the surface.Diese Arbeit stellt neue Algorithmen für algebraische Kurven und Flächen von beliebigem Grad vor. Diese Algorithmen liefern für alle Eingaben das mathematisch korrekte Ergebnis. Wir erreichen Effizienz, indem wir aufwendige symbolische Berechnungen weitesgehend vermeiden, und stattdessen kombinatorische und adaptive numerische Methoden einsetzen, ohne die Exaktheit des Resultats zu zerstören. Der Hauptbeitrag ist ein Algorithmus zur Berechnung von planaren Arrangements, die durch reelle algebraische Kurven induziert sind. Wir weisen die Effizienz des Verfahrens sowohl theoretisch durch eine Komplexitätsanalyse, als auch praktisch durch experimentelle Vergleiche nach. Dazu haben wir unser Verfahren im Rahmen der Softwarebibliothek Cgal implementiert. Die Resultate belegen, dass wir die zur Zeit beste verfügbare exakte Software bereitstellen. Der Algorithmus wird zur Arrangementberechnung rotierter Kurven, oder für Arrangements auf parametrisierten Oberflächen eingesetzt. Im R3 geben wir ein neues Verfahren zur Berechnung einer isotopen Triangulierung einer algebraischen Oberfläche an. Diese Triangulierung basiert auf einer Stratifizierung der Oberfläche, die topologische und geometrische Informationen berechnet. Unsere Implementierung ist die erste für dieses Problem, welche numerische Methoden konsequent einsetzt, und dennoch die exakte Topologie der Oberfläche liefert

    High Performance Sparse Multivariate Polynomials: Fundamental Data Structures and Algorithms

    Get PDF
    Polynomials may be represented sparsely in an effort to conserve memory usage and provide a succinct and natural representation. Moreover, polynomials which are themselves sparse – have very few non-zero terms – will have wasted memory and computation time if represented, and operated on, densely. This waste is exacerbated as the number of variables increases. We provide practical implementations of sparse multivariate data structures focused on data locality and cache complexity. We look to develop high-performance algorithms and implementations of fundamental polynomial operations, using these sparse data structures, such as arithmetic (addition, subtraction, multiplication, and division) and interpolation. We revisit a sparse arithmetic scheme introduced by Johnson in 1974, adapting and optimizing these algorithms for modern computer architectures, with our implementations over the integers and rational numbers vastly outperforming the current wide-spread implementations. We develop a new algorithm for sparse pseudo-division based on the sparse polynomial division algorithm, with very encouraging results. Polynomial interpolation is explored through univariate, dense multivariate, and sparse multivariate methods. Arithmetic and interpolation together form a solid high-performance foundation from which many higher-level and more interesting algorithms can be built
    corecore