2,477 research outputs found

    Use of an Active Canopy Sensor Mounted on an Unmanned Aerial Vehicle to Monitor the Growth and Nitrogen Status of Winter Wheat

    Get PDF
    Using remote sensing to rapidly acquire large-area crop growth information (e.g., shoot biomass, nitrogen status) is an urgent demand for modern crop production; unmanned aerial vehicle (UAV) acts as an effective monitoring platform. In order to improve the practicability and efficiency of UAV based monitoring technique, four field experiments involving different nitrogen (N) rates (0–360 kg N ha−1 ) and seven winter wheat (Triticum aestivum L.) varieties were conducted at different eco-sites (Sihong, Rugao, and Xinghua) during 2015–2019. A multispectral active canopy sensor (RapidSCAN CS-45; Holland Scientific Inc., Lincoln, NE, USA) mounted on a multirotor UAV platform was used to collect the canopy spectral reflectance data of winter wheat at key growth stages, three growth parameters (leaf area index (LAI), leaf dry matter (LDM), plant dry matter (PDM)) and three N indicators (leaf N accumulation (LNA), plant N accumulation (PNA) and N nutrition index (NNI)) were measured synchronously. The quantitative linear relationships between spectral data and six growth indices were systematically analyzed. For monitoring growth and N nutrition status at Feekes stages 6.0–10.0, 10.3–11.1 or entire growth stages, red edge ratio vegetation index (RERVI), red edge chlorophyll index (CIRE) and difference vegetation index (DVI) performed the best among the red edge band-based and red-based vegetation indices, respectively. Across all growth stages, DVI was highly correlated with LAI (R2 = 0.78), LDM (R2 = 0.61), PDM (R2 = 0.63), LNA (R2 = 0.65) and PNA (R2 = 0.73), whereas the relationships between RERVI (R2 = 0.62), CIRE (R2 = 0.62) and NNI had high coefficients of determination. The developed models performed better in monitoring growth indices and N status at Feekes stages 10.3–11.1 than Feekes stages 6.0–10.0. To sum it up, the UAV-mounted active sensor system is able to rapidly monitor the growth and N nutrition status of winter wheat and can be deployed for UAV-based remote-sensing of crops

    Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China)

    Get PDF
    The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI = (1 + e-15.2829x(RAGDDi-0.1944))-1 - (1 + e-11.6517x(RAGDDi-1.0267))-1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status

    Corn Nitrogen Nutrition Index Prediction Improved by Integrating Genetic, Environmental, and Management Factors with Active Canopy Sensing Using Machine Learning

    Get PDF
    Accurate nitrogen (N) diagnosis early in the growing season across diverse soil, weather, and management conditions is challenging. Strategies using multi-source data are hypothesized to perform significantly better than approaches using crop sensing information alone. The objective of this study was to evaluate, across diverse environments, the potential for integrating genetic (e.g., comparative relative maturity and growing degree units to key developmental growth stages), environmental (e.g., soil and weather), and management (e.g., seeding rate, irrigation, previous crop, and preplant N rate) information with active canopy sensor data for improved corn N nutrition index (NNI) prediction using machine learning methods. Thirteen site-year corn (Zea mays L.) N rate experiments involving eight N treatments conducted in four US Midwest states in 2015 and 2016 were used for this study. A proximal RapidSCAN CS-45 active canopy sensor was used to collect corn canopy reflectance data around the V9 developmental growth stage. The utility of vegetation indices and ancillary data for predicting corn aboveground biomass, plant N concentration, plant N uptake, and NNI was evaluated using singular variable regression and machine learning methods. The results indicated that when the genetic, environmental, and management data were used together with the active canopy sensor data, corn N status indicators could be more reliably predicted either using support vector regression (R2 = 0.74–0.90 for prediction) or random forest regression models (R2 = 0.84–0.93 for prediction), as compared with using the best-performing single vegetation index or using a normalized difference vegetation index (NDVI) and normalized difference red edge (NDRE) together (R2 \u3c 0.30). The N diagnostic accuracy based on the NNI was 87% using the data fusion approach with random forest regression (kappa statistic = 0.75), which was better than the result of a support vector regression model using the same inputs. The NDRE index was consistently ranked as the most important variable for predicting all the four corn N status indicators, followed by the preplant N rate. It is concluded that incorporating genetic, environmental, and management information with canopy sensing data can significantly improve in-season corn N status prediction and diagnosis across diverse soil and weather conditions

    Corn Nitrogen Nutrition Index Prediction Improved by Integrating Genetic, Environmental, and Management Factors with Active Canopy Sensing Using Machine Learning

    Get PDF
    Accurate nitrogen (N) diagnosis early in the growing season across diverse soil, weather, and management conditions is challenging. Strategies using multi-source data are hypothesized to perform significantly better than approaches using crop sensing information alone. The objective of this study was to evaluate, across diverse environments, the potential for integrating genetic (e.g., comparative relative maturity and growing degree units to key developmental growth stages), environmental (e.g., soil and weather), and management (e.g., seeding rate, irrigation, previous crop, and preplant N rate) information with active canopy sensor data for improved corn N nutrition index (NNI) prediction using machine learning methods. Thirteen site-year corn (Zea mays L.) N rate experiments involving eight N treatments conducted in four US Midwest states in 2015 and 2016 were used for this study. A proximal RapidSCAN CS-45 active canopy sensor was used to collect corn canopy reflectance data around the V9 developmental growth stage. The utility of vegetation indices and ancillary data for predicting corn aboveground biomass, plant N concentration, plant N uptake, and NNI was evaluated using singular variable regression and machine learning methods. The results indicated that when the genetic, environmental, and management data were used together with the active canopy sensor data, corn N status indicators could be more reliably predicted either using support vector regression (R2 = 0.74–0.90 for prediction) or random forest regression models (R2 = 0.84–0.93 for prediction), as compared with using the best-performing single vegetation index or using a normalized difference vegetation index (NDVI) and normalized difference red edge (NDRE) together (R2 \u3c 0.30). The N diagnostic accuracy based on the NNI was 87% using the data fusion approach with random forest regression (kappa statistic = 0.75), which was better than the result of a support vector regression model using the same inputs. The NDRE index was consistently ranked as the most important variable for predicting all the four corn N status indicators, followed by the preplant N rate. It is concluded that incorporating genetic, environmental, and management information with canopy sensing data can significantly improve in-season corn N status prediction and diagnosis across diverse soil and weather conditions

    Satellite and Fluorescence Remote Sensing for Rice Nitrogen Status Diagnosis in Northeast China

    Get PDF
    Nitrogen (N), as the most important element of crop growth and development, plays a decisive role in ensuring yield. However, the problems of over-application of N fertilizers have been repeatedly reported in China, which resulted in low N use efficiency and high risk of environmental pollution. The requirements of developing technologies for real-time and site-specific diagnosis of crop N status are the foundation to realize the precision N management, and also benefit to the improvement of the N use efficiency. Remote sensing technology provides a promising non-intrusive solution to monitor rice N status and to realize the precision N management over large areas. This research focuses on proposing N nutrition diagnosis methods and developing N fertilizer management strategies for paddy rice of cold regions in Northeast China. The main contents and results are presented as follows: (1)This study developed a new critical N (Nc) dilution curve for paddy rice of cold regions in Northeast China. The curve could be described by the equation Nc=27.7W^(-0.34) if W≥1 t/ha for dry matter (DM) or Nc=27.7g/kg DM if W<1 t/ha, where W is the aboveground biomass. Results indicated that the new Nc dilution curve was suitable for diagnosing short-season Japonica rice N status in Northeast China. The validation result indicated that it worked well to diagnose plant N status of the 11-leaf variety rice. (2)This study investigated the potential of the satellite remote sensing data for diagnosing rice N status and guiding the topdressing N application at the stem elongation stage in Northeast China. 50 vegetation indices (VIs) were computed based on the FORMOSAT-2 satellite data, and they were correlated with the field-based agronomic variables, i.e., aboveground biomass (AGB), leaf area index (LAI), plant N concentration (PNC), plant N uptake (PNU), chlorophyll meter readings, and N nutrition index (NNI, defined as the ratio of actual PNC and critical PNC according to the new Nc dilution curves). The results presented that 45% of variation in the NNI was obtained by using a direct estimation method based on the best VI according to the FORMOSAT-2 satellite data, while 52% of the variation in the NNI was yielded by an indirect estimation method, which firstly used the VIs to estimate AGB and PNU, respectively, then estimated NNI according to these two variables. Moreover, based on the critical N uptake curve, a N recommendation algorithm was proposed. The algorithm was based on the difference between the estimated PNU and the critical PNU to adjust the topdressing N application rate. The results demonstrated that FORMOSAT-2 images have the potential to estimate rice N status and guide panicle N fertilizer applications in Northeast China. (3)This study also evaluated the potential improvements of the newest satellite sensors with the red edge band for diagnosing rice N status in Northeast China. The canopy-scale hyperspectral data were upscaled to simulate the wavebands of RapidEye, WorldView-2, and FORMOSAT-2, respectively. The VI analysis, stepwise multiple linear regression (SMLR), and partial least squares regression (PLSR) were performed to evaluate the N status indicators. The results indicated that the VIs based on the RE band from RapidEye and WorldView-2 data could explain more variability for N indicators than the VIs from FORMOSAT-2 data having no RE band. Moreover, the SMLR and PLSR results revealed that both the near-infrared and red edge band were important for N status estimation. (4)The proximal fluorescence sensor Multiplex_3 was used to evaluate the potential of fluorescence spectrum for estimating the N status of the cold regional paddy rice at different growth stages. The Multiplex indices and their normalized N sufficient indices (NSI) were used to estimate the five N status indicators, i.e., AGB, leaf N concentration (LNC), PNC, PNU, and NNI. The results indicated that there were strong relationships between the fluorescence indices (i.e., BRR_FRF, FLAV, NBI_G, and NBI_R) and (i.e., LNC, PNC, NNI), with the coefficient of determination between 0.40 and 0.78. In particular, NNI was well estimated by these fluorescence indices. Moreover, the NSI data improved the accuracy of the N diagnosis. These results of this study were useful for N nutrition diagnosis and variable fertilization of the cold regional paddy rice, which were significant for the ecological environment protection and the national food security

    Use of consumer-grade cameras to assess wheat N status and grain yield

    Get PDF
    Relationships between (a) fractional Intercepted PAR (fIPAR), and (b) aboveground biomass (Biomass) and (c) grain yield at harvest with the Normalized Difference Vegetation Index (NDVI) derived either from a spectroradiometer or a conventional camera at final grain filling (n = 12).Postprint (published version

    Improving Nitrogen and Phosphorus Efficiency for Optimal Plant Growth and Yield

    Get PDF
    Nitrogen (N) and phosphorus (P) are the most important nutrients for crop production. The N contributes to the structural component, generic, and metabolic compounds in a plant cell. N is mainly an essential part of chlorophyll, the compound in the plants that is responsible for photosynthesis process. The plant can get its available nitrogen from the soil by mineralizing organic materials, fixed-N by bacteria, and nitrogen can be released from plant as residue decay. Soil minerals do not release an enough amount of nitrogen to support plant; therefore, fertilizing is necessary for high production. Phosphorous contributes in the complex of the nucleic acid structure of plants. The nucleic acid is essential in protein synthesis regulation; therefore, P is important in cell division and development of new plant tissue. P is one of the 17 essential nutrients for plant growth and related to complex energy transformations in the plant. In the past, growth in production and productivity of crops relied heavily on high-dose application of N and P fertilizers. However, continue adding those chemical fertilizers over time has bad results in diminishing returns regarding no improvement in crop productivity. Applying high doses of chemical fertilizers is a major factor in the climate change in terms of nitrous oxide gas as one of the greenhouse gas and eutrophication that happens because of P pollution in water streams. This chapter speaks about N and P use efficiency and how they are necessary for plant and environment

    Remote Sensing for Precision Nitrogen Management

    Get PDF
    This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment

    Dark Green Color Index as a Method of Real-time In-season Corn Nitrogen Measurement and Fertilization

    Get PDF
    Corn (Zea mays L.) requires higher rates of nitrogen fertilizer than any other major U.S. crop partly because N fertilizers are subject to loss through various mechanisms. Because of this, corn may suffer from inadequate nitrogen fertilization or producers may over-apply nitrogen to compensate for early-season nitrogen losses. A timely, accurate, and precise method for measuring in-season corn N status is needed to allow producers to keep nitrogen use efficiency high within a growing season. Using appropriate software, hue, saturation, and brightness values of digital images can be combined in a dark green color index (DGCI) which is closely associated with leaf nitrogen concentration. Our objectives were: (1) to develop quantitative relationships among yield, corn leaf nitrogen concentration, and DGCI measurements taken in the mid-vegetative stages of growth development;; and (2) to determine the amount of nitrogen to apply to recover yield based upon DGCI measurements on 6-leaf corn (V6). Various corn hybrids were planted across two years in Arkansas. A wide range of N applications were made at emergence and at V6 stage. SPAD, DGCI, and leaf nitrogen measurements were taken prior to V6 application and again at tasseling. Leaf nitrogen concentrations, DGCI, and SPAD were found to be closely associated. Crops with varying early-season N deficiencies demonstrated a non-linear, quadratic response to V6 N applications. Combining the responses of yield to V6 N application amounts with concurrent mid-season DGCI measurements allowed for the development of calibration equations. These calibrations equations allow corrective, mid-season N applications to be made based on an observed DGCI value, which allows for the recovery of 90 or 95% of the crop\u27s yield potential

    Assessment of maize nitrogen uptake from PRISMA hyperspectral data through hybrid modelling

    Get PDF
    The spaceborne imaging spectroscopy mission PRecursore IperSpettrale della Missione Applicativa (PRISMA), launched on 22 March 2019 by the Italian Space Agency, opens new opportunities in many scientific domains, including precision farming and sustainable agriculture. This new Earth Observation (EO) data stream requires new-generation approaches for the estimation of important biophysical crop variables (BVs). In this framework, this study evaluated a hybrid approach, combining the radiative transfer model PROSAIL-PRO and several machine learning (ML) regression algorithms, for the retrieval of canopy chlorophyll content (CCC) and canopy nitrogen content (CNC) from synthetic PRISMA data. PRISMA-like data were simulated from two images acquired by the airborne sensor HyPlant, during a campaign performed in Grosseto (Italy) in 2018. CCC and CNC estimations, assessed from the best performing ML algorithms, were used to define two relations with plant nitrogen uptake (PNU). CNC proved to be slightly more correlated to PNU than CCC (R-2 = 0.82 and R-2 = 0.80, respectively). The CNC-PNU model was then applied to actual PRISMA images acquired in 2020. The results showed that the estimated PNU values are within the expected ranges, and the temporal trends are compatible with plant phenology stages
    • …
    corecore