373 research outputs found

    Multipath routing and QoS provisioning in mobile ad hoc networks

    Get PDF
    PhDA Mobile Ad Hoc Networks (MANET) is a collection of mobile nodes that can communicate with each other using multihop wireless links without utilizing any fixed based-station infrastructure and centralized management. Each mobile node in the network acts as both a host generating flows or being destination of flows and a router forwarding flows directed to other nodes. Future applications of MANETs are expected to be based on all-IP architecture and be capable of carrying multitude real-time multimedia applications such as voice and video as well as data. It is very necessary for MANETs to have an efficient routing and quality of service (QoS) mechanism to support diverse applications. This thesis proposes an on-demand Node-Disjoint Multipath Routing protocol (NDMR) with low broadcast redundancy. Multipath routing allows the establishment of multiple paths between a single source and single destination node. It is also beneficial to avoid traffic congestion and frequent link breaks in communication because of the mobility of nodes. The important components of the protocol, such as path accumulation, decreasing routing overhead and selecting node-disjoint paths, are explained. Because the new protocol significantly reduces the total number of Route Request packets, this results in an increased delivery ratio, smaller end-to-end delays for data packets, lower control overhead and fewer collisions of packets. Although NDMR provides node-disjoint multipath routing with low route overhead in MANETs, it is only a best-effort routing approach, which is not enough to support QoS. DiffServ is a standard approach for a more scalable way to achieve QoS in any IP network and could potentially be used to provide QoS in MANETs because it minimises the need for signalling. However, one of the biggest drawbacks of DiffServ is that the QoS provisioning is separate from the routing process. This thesis presents a Multipath QoS Routing protocol for iv supporting DiffServ (MQRD), which combines the advantages of NDMR and DiffServ. The protocol can classify network traffic into different priority levels and apply priority scheduling and queuing management mechanisms to obtain QoS guarantees

    Engineering a Suburban Ad-Hoc Network

    Get PDF
    Networks are growing in popularity, as wireless communication hardware, both fixed and mobile, becomes more common and affordable. The Monash Suburban Ad-Hoc Network (SAHN) project has devised a system that provides a highly secure and survivable ad-hoc network, capable of delivering broadband speeds to co-operating users within a fixed environment, such as a residential neighbourhood, or a campus. The SAHN can be used by residents within a community to exchange information, to share access to the Internet, providing last-mile access, or for local telephony and video conferencing. SAHN nodes are designed to be self-configuring and selfmanaging, relying on no experienced user intervention. Thus, they are suitable for use by the general public, in ‘plug-and-play’ fashion. This paper investigates possible architectures for an implementation of the SAHN (Tyson 2005), and presents a real-world prototype. The prototype presented takes the form of a Linux kernel module, and a user-space daemon

    Solving hidden terminal problem in MU-MIMO WLANs with fairness and throughput-aware precoding and a degrees-of-freedom-based MAC design

    Get PDF
    © 2016, Shrestha et al. We generally emphasize that the zeroforcing (ZF) technique backed by an appropriate medium access control (MAC) protocol can be used to address the inevitable hidden terminal (HT) problem in multi-user multiple input multiple output (MU-MIMO) wireless local area network (WLAN) settings. However, to address the implementation-specific requirements of MU-MIMO WLANs, such as fairness in client access and throughput of the network, we propose a fairness and a throughput-aware ZF precoding in our design at the physical layer (PHY). This precoding scheme not only solves the HT problem but also meets the fairness and the throughput requirements of MU-MIMO WLANs. Besides, we design a MAC layer protocol, supportive to PHY, which decides transmission opportunities (TXOPs) among access points (APs) based on the available degrees of freedom (DoF). We make a mandatory provision in our design that APs should have a sufficient DoF. This can ensure collision-free transmission whenever APs/transmitters transmit in the HT scenario. Additionally, we design an improved channel sounding process for MU-MIMO WLANs with a less signaling overhead than IEEE802.11ac. We demonstrate the feasibility of our PHY in a USRP2/GNU Radio testbed prototype in the lab settings. It is found that our PHY improves the SNR and effective SNR of the received signal from about 5 to 11 dB in the HT scenario. The performance of our MAC design is checked with simulation studies in a typical six-antenna AP and clients scenario. We observe that our MAC protocol has a slightly higher signaling overhead than traditional ready to send/clear to send (RTS/CTS) due to design constraints; however, the signaling time overheads are reduced by 98.67 μs compared to IEEE802.11ac. Another interesting aspect to highlight is the constant Throughput gain of four to five times that of the traditional RTS/CTS. Our MAC protocol obtains this gain as early as 98.67 μs compared to IEEE802.11ac

    Comprehensive Survey Congestion Control Mechanisms in Wireless Sensor Networks:Comprehensive Survey

    Get PDF
    Wireless sensor network (WSN) occupies the top rank of the widely used networks for gathering different type of information from different averments. WSN has nodes with limited resources so congestion can cause a critical damage to such network where it limited resources can be exhausted. Many approaches has been proposed to deal with this problem. In this paper, different proposed algorithm for congestion detection, notification, mitigation and avoidance has been listed and discussed. These algorithms has been investigated by presenting its advantages and disadvantages. This paper provides a robust background for readers and researches for wireless sensor networks congestion control approaches. Keywords: WSN, Congestion Control, congestion mitigation, congestion detection, sink channel load, buffer load

    Experimental Study on Real-Time Wireless Networks for Motion Control of Manipulator and Mobile Platform in Industrial Robotics

    Get PDF
    The integration of ICT with manufacturing technologies is a key step towards intelligent manufacturing. The goal is to investigate some industrial application scenarios and evaluate the performance of selected wireless technologies. A recently standardized industrial wireless technology, WIA-FA, has shown good performance in practical deployments. Two experimental applications are considered: path planning testing with different wireless technologies and CANbus bridging with WIA-FA.openEmbargo temporaneo per motivi di segretezza e/o di proprietà dei risultati e informazioni di enti esterni o aziende private che hanno partecipato alla realizzazione del lavoro di ricerca relativo alla tes

    Media independent handovers : network selection for mobile IP nodes in heterogeneous wireless networks

    Get PDF
    Includes abstract.Includes bibliographical references (p. 79-82).In Next Generation Networks (NGN), also known as 4G, Beyond 3G, Converged, Integrated and Interworked Network, user node mobility in wireless and wired environments will seamlessly cross disparate network boundaries. The effort to offer ubiquitous computing, providing access to services anywhere and anytime, strongly encourages the ability to roam across the different existing and future networks. Literature shows investigation of concepts such as Always Best Connected (ABC) when heterogeneous networks co-exist , which will work or compete with other schemes like Home Network Default (HND), Compatibility and Network Operator Agreements (CNOA) to guide network selection or access . With the variety of available networks, the mobile node may be faced with having to decide which network to connect to. We concentrate on the network selection aspects of these envisaged mobile, overlay and integrated environment in heterogeneous networks. The standard developments by the IEEE802.21 Working group and the IETF Networking group form the base of our approach that seeks to see mobility across heterogeneous networks a reality. We propose an IEEE802.21 Media Independent Handover Function (MIHF) based network discovery and network selection, leading to a handover. The selection may be further assisted by an MIHF capable Broker Node that is Third party to the Network Providers to provide a central yet distributed database of the available networks as encountered by the Mobile Node, to cater for Nodes with no prior knowledge of networks and software repository. A Mobile Node (MN) in our solution uses 802.21 communication messages to obtain information about foreign networks encountered before selecting the networks to connect to. Our evaluation through simulations, shows that network selection in heterogeneous wireless networks environment for the appropriately equipped devices is greatly enhanced by the use of the Media Independent Handover Protocol. In scenarios where the mobile node has no prior knowledge of the encountered different network architectures, the use of a Broker node can, for an optimal number of available networks also greatly enhance the mobile node’s network selection by reducing the delay associated and the packet losses incurred

    PERFORMANCE STUDY FOR CAPILLARY MACHINE-TO-MACHINE NETWORKS

    Get PDF
    Communication technologies witness a wide and rapid pervasiveness of wireless machine-to-machine (M2M) communications. It is emerging to apply for data transfer among devices without human intervention. Capillary M2M networks represent a candidate for providing reliable M2M connectivity. In this thesis, we propose a wireless network architecture that aims at supporting a wide range of M2M applications (either real-time or non-real-time) with an acceptable QoS level. The architecture uses capillary gateways to reduce the number of devices communicating directly with a cellular network such as LTE. Moreover, the proposed architecture reduces the traffic load on the cellular network by providing capillary gateways with dual wireless interfaces. One interface is connected to the cellular network, whereas the other is proposed to communicate to the intended destination via a WiFi-based mesh backbone for cost-effectiveness. We study the performance of our proposed architecture with the aid of the ns-2 simulator. An M2M capillary network is simulated in different scenarios by varying multiple factors that affect the system performance. The simulation results measure average packet delay and packet loss to evaluate the quality-of-service (QoS) of the proposed architecture. Our results reveal that the proposed architecture can satisfy the required level of QoS with low traffic load on the cellular network. It also outperforms a cellular-based capillary M2M network and WiFi-based capillary M2M network. This implies a low cost of operation for the service provider while meeting a high-bandwidth service level agreement. In addition, we investigate how the proposed architecture behaves with different factors like the number of capillary gateways, different application traffic rates, the number of backbone routers with different routing protocols, the number of destination servers, and the data rates provided by the LTE and Wi-Fi technologies. Furthermore, the simulation results show that the proposed architecture continues to be reliable in terms of packet delay and packet loss even under a large number of nodes and high application traffic rates
    corecore