22,105 research outputs found

    Evaluation of quality of service in fourth generation wireless and mobile networks

    Get PDF
    Communication networks extend network capacity and coverage by leveraging network and resource architecture in a dynamic way. However, because of the different communication technologies and quality of service (QoS, managing and monitoring these networks are too difficult. All communication technology has its own characteristics while the applications you use have their own QoS requirements. The methods are based on the QoS analysis for each application or access network separately. However, these methods do not combine all performance and wireless access networks while reporting QoS quality to the group Arrangement. Therefore, it is difficult to obtain any aggregate performance results using these methods. In this project, a methodical method is applied for the QoS analysis of these types of networks. The method uses a fuzzy logic (FL), artificial neural network (ANN) and Adaptive Neuro-fuzzy Interference System (ANFIS) to evaluate and predict the performance QoS of networks. The proposed methods consider the significance of QoS-related parameters, the available network-based applications, and the available Radio Access Networks (RANs) to characterize the network performance with a set of three integrated QoS metrics. The first metric denotes the performance of each available application on the network, the second one represents the performance of each active RAN on the network, and the third one characterizes the QoS level of the entire network configuration. The obtained predicting output were compared to the actual data and to each other to test which system the best for this study. The results ANN model were the closed to the real data than outcome ANFIS model

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    NOMA based resource allocation and mobility enhancement framework for IoT in next generation cellular networks

    Get PDF
    With the unprecedented technological advances witnessed in the last two decades, more devices are connected to the internet, forming what is called internet of things (IoT). IoT devices with heterogeneous characteristics and quality of experience (QoE) requirements may engage in dynamic spectrum market due to scarcity of radio resources. We propose a framework to efficiently quantify and supply radio resources to the IoT devices by developing intelligent systems. The primary goal of the paper is to study the characteristics of the next generation of cellular networks with non-orthogonal multiple access (NOMA) to enable connectivity to clustered IoT devices. First, we demonstrate how the distribution and QoE requirements of IoT devices impact the required number of radio resources in real time. Second, we prove that using an extended auction algorithm by implementing a series of complementary functions, enhance the radio resource utilization efficiency. The results show substantial reduction in the number of sub-carriers required when compared to conventional orthogonal multiple access (OMA) and the intelligent clustering is scalable and adaptable to the cellular environment. Ability to move spectrum usages from one cluster to other clusters after borrowing when a cluster has less user or move out of the boundary is another soft feature that contributes to the reported radio resource utilization efficiency. Moreover, the proposed framework provides IoT service providers cost estimation to control their spectrum acquisition to achieve required quality of service (QoS) with guaranteed bit rate (GBR) and non-guaranteed bit rate (Non-GBR)

    Design and Implementation of a Measurement-Based Policy-Driven Resource Management Framework For Converged Networks

    Full text link
    This paper presents the design and implementation of a measurement-based QoS and resource management framework, CNQF (Converged Networks QoS Management Framework). CNQF is designed to provide unified, scalable QoS control and resource management through the use of a policy-based network management paradigm. It achieves this via distributed functional entities that are deployed to co-ordinate the resources of the transport network through centralized policy-driven decisions supported by measurement-based control architecture. We present the CNQF architecture, implementation of the prototype and validation of various inbuilt QoS control mechanisms using real traffic flows on a Linux-based experimental test bed.Comment: in Ictact Journal On Communication Technology: Special Issue On Next Generation Wireless Networks And Applications, June 2011, Volume 2, Issue 2, Issn: 2229-6948(Online

    Energy efficiency analysis of next-generation passive optical network (NG-PON) technologies in a major city network

    Get PDF
    Ever-increasing bandwidth demands associated with mobile backhaul, content-rich services and the convergence of residential and business access will drive the need for next-generation passive optical networks (NG-PONs) in the long term. At the same time, there is a growing interest in reducing the energy consumption and the associated cost of the access network. In this paper, we consider a deployment scenario in a major city to assess the energy efficiency of various PON solutions from a telecom operator's perspective. We compare five next-generation technologies to a baseline GPON deployment offering similar bandwidths and Quality of Service (QoS) for best-effort high speed connectivity services. We follow two approaches:first, we consider a fixed split ratio (1:64) in an existing Optical Distribution Network (ODN); next, we consider an upgraded ODN with an optimized split ratio for the specific bandwidth and QoS values. For medium bandwidth demands, our results show that legacy PONs can be upgraded to 10G PON without any ODN modification. For future applications that may require access rates up to 1 Gb/s, NG-PON2 technologies with higher split ratios and increased reach become more interesting systems, offering the potential for both increased energy efficiency and node consolidation
    corecore