3,071 research outputs found

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Evolution of fluid expulsion and concentrated hydrate zones across the southern Hikurangi subduction margin, New Zealand: An analysis from depth migrated seismic data

    Get PDF
    Identification of methane sources controlling hydrate distribution and concentrations in continental margins remains a major challenge in gas hydrate research. Lack of deep fluid samples and high quality regional scale seismic reflection data may lead to underestimation of the significance of fluid escape from subducting and compacting sediments in the global inventory of methane reaching the hydrate zone, the water column and the atmosphere. The distribution of concentrated hydrate zones in relation to focused fluid flow across the southern Hikurangi subduction margin was investigated using high quality, long offset (10 km streamer), pre-stack depth migrated multichannel seismic data. Analysis of low P wave velocity zones, bright-reverse polarity reflections and dim-amplitude anomalies reveals pathways for gas escape and zones of gas accumulation. The study shows the structural and stratigraphic settings of three main areas of concentrated hydrates: (1) the Opouawe Bank, dominated by focused periodic fluid input along thrust faults sustaining dynamic hydrate concentrations and gas chimneys development; (2) the frontal anticline, with a basal set of protothrusts controlling permeability for fluids from deeply buried and subducted sediments sustaining hydrate concentrations at the crest of the anticline; and (3) the Hikurangi Channel, with buried sand dominated channels hosting significant amounts of gas beneath the base of the hydrate zone. In sand dominated channels gas injection into the hydrate zone favors highly concentrated hydrate accumulations. The evolution of fluid expulsion controlling hydrate formation offshore southern Hikurangi is described in stages during which different methane sources (in situ, buried and thermogenic) have been dominant

    Influence of near-surface stratigraphy on coastal landslides at Sleeping Bear Dunes National Lakeshore, Lake Michigan, USA

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Coastal Research 20 (2004): 510-522, doi:10.2112/1551-5036(2004)020[0510:IONSOC]2.0.CO;2.Lake-level change and landslides are primary controls on the development of coastal environments along the coast of northeastern Lake Michigan. The late Quaternary geology of Sleeping Bear Dunes National Lakeshore was examined with high-resolution seismic reflection profiles, ground-penetrating radar (GPR), and boreholes. Based on sequence-stratigraphic principles, this study recognizes ten stratigraphic units and three major unconformities that were formed by late Pleistocene glaciation and postglacial lake-level changes. Locally high sediment supply, and reworking by two regressions and a transgression have produced a complex stratigraphy that is prone to episodic failure. In 1995, a large landslide deposited approximately 1 million m3 of sediment on the lake floor. The highly deformed landslide deposits, up to 18 m thick, extend 3–4 km offshore and unconformably overlie well-stratified glacial and lacustrine sediment. The landslide-prone bluff is underlain by channel-fill deposits that are oriented nearly perpendicular to the shoreline. The paleochannels are at least 10 m deep and 400 m wide and probably represent stream incision during a lake-level lowstand about 10.3 ka B.P. The channels filled with sediment during the subsequent transgression and lake-level highstand, which climaxed about 4.5 ka B.P. As lake level fell from the highstand, the formation of beach ridges and sand dunes sealed off the channel and isolated a small inland lake (Glen Lake), which lies 5 m above the level of Lake Michigan and may be a source of piped groundwater. Our hypothesis is that the paleochannels act as conduits for pore water flow, and thereby locally reduce soil strength and promote slope failure.Generous support for this project was provided by Max Holden and Steve Yancho of Sleeping Bear Dunes National Lakeshore
    • …
    corecore