201 research outputs found

    GL-Socket: A CG plugin-based framework for teaching and assessment

    Get PDF
    In this paper we describe a plugin-based C++ framework for teaching OpenGL and GLSL in introductory Computer Graphics courses. The main strength of the framework architecture is that student assignments are mostly independent and thus can be completed, tested and evaluated in any order. When students complete a task, the plugin interface forces a clear separation of initialization, interaction and drawing code, which in turn facilitates code reusability. Plugin code can access scene, camera, and OpenGL window methods through a simple API. The plugin interface is flexible enough to allow students to complete tasks requiring shader development, object drawing, and multiple rendering passes. Students are provided with sample plugins with basic scene drawing and camera control features. One of the plugins that the students receive contains a shader development framework with self-assessment features. We describe the lessons learned after using the tool for four years in a Computer Graphics course involving more than one hundred Computer Science students per year.Peer ReviewedPostprint (published version

    Project Elements: A computational entity-component-system in a scene-graph pythonic framework, for a neural, geometric computer graphics curriculum

    Full text link
    We present the Elements project, a computational science and computer graphics (CG) framework, that offers for the first time the advantages of an Entity-Component-System (ECS) along with the rapid prototyping convenience of a Scenegraph-based pythonic framework. This novelty allows advances in the teaching of CG: from heterogeneous directed acyclic graphs and depth-first traversals, to animation, skinning, geometric algebra and shader-based components rendered via unique systems all the way to their representation as graph neural networks for 3D scientific visualization. Taking advantage of the unique ECS in a a Scenegraph underlying system, this project aims to bridge CG curricula and modern game engines, that are based on the same approach but often present these notions in a black-box approach. It is designed to actively utilize software design patterns, under an extensible open-source approach. Although Elements provides a modern, simple to program pythonic approach with Jupyter notebooks and unit-tests, its CG pipeline is not black-box, exposing for teaching for the first time unique challenging scientific, visual and neural computing concepts.Comment: 8 pages, 8 figures, 2 listings, submitted to EuroGraphics 2023 education trac

    Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    Get PDF
    This major component of the research described in this thesis is 3D computer graphics, specifically the realistic physics-based softbody simulation and haptic responsive environments. Minor components include advanced human-computer interaction environments, non-linear documentary storytelling, and theatre performance. The journey of this research has been unusual because it requires a researcher with solid knowledge and background in multiple disciplines; who also has to be creative and sensitive in order to combine the possible areas into a new research direction. [...] It focuses on the advanced computer graphics and emerges from experimental cinematic works and theatrical artistic practices. Some development content and installations are completed to prove and evaluate the described concepts and to be convincing. [...] To summarize, the resulting work involves not only artistic creativity, but solving or combining technological hurdles in motion tracking, pattern recognition, force feedback control, etc., with the available documentary footage on film, video, or images, and text via a variety of devices [....] and programming, and installing all the needed interfaces such that it all works in real-time. Thus, the contribution to the knowledge advancement is in solving these interfacing problems and the real-time aspects of the interaction that have uses in film industry, fashion industry, new age interactive theatre, computer games, and web-based technologies and services for entertainment and education. It also includes building up on this experience to integrate Kinect- and haptic-based interaction, artistic scenery rendering, and other forms of control. This research work connects all the research disciplines, seemingly disjoint fields of research, such as computer graphics, documentary film, interactive media, and theatre performance together.Comment: PhD thesis copy; 272 pages, 83 figures, 6 algorithm

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Didactic tool for the development of shaders

    Get PDF

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Medical Data Visual Synchronization and Information interaction Using Internet-based Graphics Rendering and Message-oriented Streaming

    Get PDF
    The rapid technology advances in medical devices make possible the generation of vast amounts of data, which contain massive quantities of diagnostic information. Interactively accessing and sharing the acquired data on the Internet is critically important in telemedicine. However, due to the lack of efficient algorithms and high computational cost, collaborative medical data exploration on the Internet is still a challenging task in clinical settings. Therefore, we develop a web-based medical image rendering and visual synchronization software platform, in which novel algorithms are created for parallel data computing and image feature enhancement, where Node.js and Socket.IO libraries are utilized to establish bidirectional connections between server and clients in real time. In addition, we design a new methodology to stream medical information among all connected users, whose identities and input messages can be automatically stored in database and extracted in web browsers. The presented software framework will provide multiple medical practitioners with immediate visual feedback and interactive information in applications such as collaborative therapy planning, distributed treatment, and remote clinical health care

    Syntactic and semantic analysis for extended feedback on computer graphics assignments

    Get PDF
    ©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Modern computer graphics courses require students to complete assignments involving computer programming. The evaluation of student programs, either by the student (self-assessment) or by the instructors (grading) can take a considerable amount of time and does not scale well with large groups. Interactive judges giving a pass/fail verdict do constitute a scalable solution, but they only provide feedback on output correctness. In this article, we present a tool to provide extensive feedback on student submissions. The feedback is based both on checking the output against test sets, as well as on syntactic and semantic analysis of the code. These analyses are performed through a set of code features and instructor-defined rubrics. The tool is built with Python and supports shader programs written in GLSL. Our experiments demonstrate that the tool provides extensive feedback that can be useful to support self-assessment, facilitate grading, and identify frequent programming mistakes.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness and FEDER Grant TIN2017-88515-C2-1-R.Peer ReviewedPostprint (author's final draft
    corecore