11,809 research outputs found

    Impact of EHR Usability on Provider Efficiency and Patient Safety in Non-Hospital Settings

    Get PDF
    Healthcare organizations may reap benefits transitioning to electronic health records (EHRs), such as decreased healthcare costs and better care. However, severe unintended consequences from implementation and design of these systems have emerged. Poorly implemented EHR systems may endanger the integrity of clinical or administrative data. That, in turn, can lead to errors jeopardizing patient safety or quality of care. A literature review of 40 sources identified how EHR implementation and design can impact provider centric, patient centric, and outcomes. These categories provided the basis for a comprehensive EHR impact model that was evaluated in non-hospital settings through focus groups interviews

    Health Figures: An Open Source JavaScript Library for Health Data Visualization

    Get PDF
    The way we look at data has a great impact on how we can understand it, particularly when the data is related to health and wellness. Due to the increased use of self-tracking devices and the ongoing shift towards preventive medicine, better understanding of our health data is an important part of improving the general welfare of the citizens. Electronic Health Records, self-tracking devices and mobile applications provide a rich variety of data but it often becomes difficult to understand. We implemented the hFigures library inspired on the hGraph visualization with additional improvements. The purpose of the library is to provide a visual representation of the evolution of health measurements in a complete and useful manner. We researched the usefulness and usability of the library by building an application for health data visualization in a health coaching program. We performed a user evaluation with Heuristic Evaluation, Controlled User Testing and Usability Questionnaires. In the Heuristics Evaluation the average response was 6.3 out of 7 points and the Cognitive Walkthrough done by usability experts indicated no design or mismatch errors. In the CSUQ usability test the system obtained an average score of 6.13 out of 7, and in the ASQ usability test the overall satisfaction score was 6.64 out of 7. We developed hFigures, an open source library for visualizing a complete, accurate and normalized graphical representation of health data. The idea is based on the concept of the hGraph but it provides additional key features, including a comparison of multiple health measurements over time. We conducted a usability evaluation of the library as a key component of an application for health and wellness monitoring. The results indicate that the data visualization library was helpful in assisting users in understanding health data and its evolution over time.Comment: BMC Medical Informatics and Decision Making 16.1 (2016

    Usability analysis of contending electronic health record systems

    Get PDF
    In this paper, we report measured usability of two leading EHR systems during procurement. A total of 18 users participated in paired-usability testing of three scenarios: ordering and managing medications by an outpatient physician, medicine administration by an inpatient nurse and scheduling of appointments by nursing staff. Data for audio, screen capture, satisfaction rating, task success and errors made was collected during testing. We found a clear difference between the systems for percentage of successfully completed tasks, two different satisfaction measures and perceived learnability when looking at the results over all scenarios. We conclude that usability should be evaluated during procurement and the difference in usability between systems could be revealed even with fewer measures than were used in our study. Š 2019 American Psychological Association Inc. All rights reserved.Peer reviewe

    Integrating Clinical Decision Support into Workflow

    Get PDF
    Purpose: The aims were to (1) identify barriers and facilitators related to integration of clinical decision support (CDS) into workflow and (2) develop and test CDS design alternatives. Scope: To better understand CDS integration, we studied its use in practice, focusing on CDS for colorectal cancer (CRC) screening and followup. Phase 1 involved outpatient clinics of four different systems—120 clinic staff and providers and 118 patients were observed. In Phase 2, prototyped design enhancements to the Veterans Administration’s CRC screening reminder were compared against its current reminder in a simulation experiment. Twelve providers participated. Methods: Phase 1 was a qualitative project, using key informant interviews, direct observation, opportunistic interviews, and focus groups. All data were analyzed using a coding template, based on the sociotechnical systems theory, which was modified as coding proceeded and themes emerged. Phase 2 consisted of rapid prototyping of CDS design alternatives based on Phase 1 findings and a simulation experiment to test these design changes in a within-subject comparison. Results: Very different CDS types existed across sites, yet there are common barriers: (1) lack of coordination of “outside” results and between primary and specialty care; (2) suboptimal data organization and presentation; (3) needed provider and patient education; (4) needed interface flexibility; (5) needed technological enhancements; (6) unclear role assignments; (7) organizational issues; and (8) disconnect with quality reporting. Design enhancements positively impacted usability and workflow integration but not workload. Conclusions: Effective CDS design and integration requires: (1) organizational and workflow integration; (2) integrating outside results; (3) improving data organization and presentation in a flexible interface; and (4) providing just-in time education, cognitive support, and quality reporting

    Electronic Health Record Optimization for Cardiac Care

    Get PDF
    Electronic health record (EHR) systems have been studied for over 30 years, and despite the benefits of information technology in other knowledge domains, progress has been slow in healthcare. A growing body of evidence suggests that dissatisfaction with EHR systems was not simply due to resistance to adoption of new technology but also due to real concerns about the adverse impact of EHRs on the delivery of patient care. Solutions for EHR improvement require an approach that combines an understanding of technology adoption with the complexity of the social and technical elements of the US healthcare system. Several studies are presented to clarify and propose a new framework to study EHR-provider interaction. Four focus areas were defined - workflow, communication, medical decision-making and patient care. Using Human Computer Interaction best practices, an EHR usability framework was designed to include a realistic clinical scenario, a cognitive walkthrough, a standardized simulated patient actor, and a portable usability lab. Cardiologists, fellows and nurse practitioners were invited to participate in a simulation to use their institution’s EHR system for a routine cardiac visit. Using a mixed methods approach, differences in satisfaction and effectiveness were identified. Cardiologists were dissatisfied with EHR functionality, and were critical of the potential impact of the communication of incorrect information, while displaying the highest level of success in completing the tasks. Fellows were slightly less dissatisfied with their EHR interaction, and demonstrated a preference for tools to improve workflow and support decision-making, and showed less success in completing the tasks in the scenario. Nurse practitioners were also dissatisfied with their EHR interaction, and cited poor organization of data, yet demonstrated more success than fellows in successful completion of tasks. Study results indicate that requirements for EHR functionality differ by type of provider. Cardiologists, cardiology fellows, and nurse practitioners required different levels of granularity of patient data for use in medical decision-making, defined different targets for communication, sought different solutions to workflow which included distribution of data input, and requested technical solutions to ensure valid and relevant patient data. These findings provide a foundation for future work to optimize EHR functionality

    Redesign of a computerized clinical reminder for colorectal cancer screening: a human-computer interaction evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on barriers to the use of computerized clinical decision support (CDS) learned in an earlier field study, we prototyped design enhancements to the Veterans Health Administration's (VHA's) colorectal cancer (CRC) screening clinical reminder to compare against the VHA's current CRC reminder.</p> <p>Methods</p> <p>In a controlled simulation experiment, 12 primary care providers (PCPs) used prototypes of the current and redesigned CRC screening reminder in a within-subject comparison. Quantitative measurements were based on a usability survey, workload assessment instrument, and workflow integration survey. We also collected qualitative data on both designs.</p> <p>Results</p> <p>Design enhancements to the VHA's existing CRC screening clinical reminder positively impacted aspects of usability and workflow integration but not workload. The qualitative analysis revealed broad support across participants for the design enhancements with specific suggestions for improving the reminder further.</p> <p>Conclusions</p> <p>This study demonstrates the value of a human-computer interaction evaluation in informing the redesign of information tools to foster uptake, integration into workflow, and use in clinical practice.</p

    Design of a tablet computer app for facilitation of a molecular blood culture test in clinical microbiology and preliminary usability evaluation

    Get PDF
    BACKGROUND: User mobility is an important aspect of the development of clinical information systems for health care professionals. Mobile phones and tablet computers have obtained widespread use by health care professionals, offering an opportunity for supporting the access to patient information through specialized applications (apps) while supporting the mobility of the users. The use of apps for mobile phones and tablet computers may support workflow of complex tasks, for example, molecular-based diagnostic tests in clinical microbiology. Multiplex Blood Culture Test (MuxBCT) is a molecular-based diagnostic test used for rapid identification of pathogens in positive blood cultures. To facilitate the workflow of the MuxBCT, a specialized tablet computer app was developed as an accessory to the diagnostic test. The app aims to reduce the complexity of the test by step-by-step guidance of microscopy and to assist users in reaching an exact bacterial or fungal diagnosis based on blood specimen observations and controls. Additionally, the app allows for entry of test results, and communication thereof to the laboratory information system (LIS). OBJECTIVE: The objective of the study was to describe the design considerations of the MuxBCT app and the results of a preliminary usability evaluation. METHODS: The MuxBCT tablet app was developed and set up for use in a clinical microbiology laboratory. A near-live simulation study was conducted in the clinical microbiology laboratory to evaluate the usability of the MuxBCT app. The study was designed to achieve a high degree of realism as participants carried out a scenario representing the context of use for the MuxBCT app. As the MuxBCT was under development, the scenario involved the use of molecular blood culture tests similar to the MuxBCT for identification of microorganisms from positive blood culture samples. The study participants were observed, and their interactions with the app were recorded. After the study, the participants were debriefed to clarify observations. RESULTS: Four medical laboratory technicians, for example, representative of end users of the app, participated in the clinical simulation study. Using the MuxBCT app, the study participants successfully identified and reported all microorganisms from the positive blood cultures examined. Three of the four participants reported that they found the app useful, while one study participant reported that she would prefer to make notes on paper and later enter them into the LIS. CONCLUSIONS: The preliminary usability evaluation results indicate that use of the MuxBCT tablet app can facilitate the workflow of the MuxBCT diagnostic test

    Advances in Teaching & Learning Day Abstracts 2005

    Get PDF
    Proceedings of the Advances in Teaching & Learning Day Regional Conference held at The University of Texas Health Science Center at Houston in 2005

    New intelligent network approach for monitoring physiological parameters : the case of Benin

    Get PDF
    Benin health system is facing many challenges as: (i) affordable high-quality health care to a growing population providing need, (ii) patients’ hospitalization time reduction, (iii) and presence time of the nursing staff optimization. Such challenges can be solved by remote monitoring of patients. To achieve this, five steps were followed. 1) Identification of the Wireless Body Area Network (WBAN) systems’ characteristics and the patient physiological parameters’ monitoring. 2) The national Integrated Patient Monitoring Network (RIMP) architecture modeling in a cloud of Technocenters. 3) Cross-analysis between the characteristics and the functional requirements identified. 4) Each Technocenter’s functionality simulation through: a) the design approach choice inspired by the life cycle of V systems; b) functional modeling through SysML Language; c) the communication technology and different architectures of sensor networks choice studying. 5) An estimate of the material resources of the national RIMP according to physiological parameters. A National Integrated Network for Patient Monitoring (RNIMP) remotely, ambulatory or not, was designed for Beninese health system. The implementation of the RNIMP will contribute to improve patients’ care in Benin. The proposed network is supported by a repository that can be used for its implementation, monitoring and evaluation. It is a table of 36 characteristic elements each of which must satisfy 5 requirements relating to: medical application, design factors, safety, performance indicators and materiovigilance
    • …
    corecore