2,691 research outputs found

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Self-Organised Music

    Get PDF
    Self-organisation, as manifest, for example, by swarms, flock, herds and other collectives, is a powerful natural force, capable of generating large and sustained structures. Yet the individuals who participate in these social groups may not even be aware of the structures that they are creating. Almost certainly, these structures emerge through the application of simple, local interactions. Improvised music is an uncertain activity, characterised by a lack of top-down organisation and busy, local activity between improvisers. Emerging structures may only be perceivable at a (temporal) distance. The development of higher-level musical structure arises from interactions at lower levels, and we propose here that the self-organisation of social animals provides a very suggestive analogy. This paper builds a model of interactivity based on stigmergy, the process by which social insects communicate indirectly by environment modification. The improvisational element of our model arises from the dynamics of a particle swarm. A process called interpretation extracts musical parameters from the aural sound environment, and uses these parameters to place attractors in the environment of the swarm, after which stigmergy can take place. The particle positions are reinterpreted as parameterised audio events. This paper describes this model and two applications, Swarm Music and Swarm Granulator

    An Activity-Centric Approach to Configuration Work in Distributed Interaction

    Get PDF
    The widespread introduction of new types of computing devices, such as smartphones, tablet computers, large interactive displays or even wearable devices, has led to setups in which users are interacting with a rich ecology of devices. These new device ecologies have the potential to introduce a whole new set of cross-device and cross-user interactions as well as to support seamless distributed workspaces that facilitate coordination and communication with other users. Because of the distributed nature of this paradigm, there is an intrinsic difficulty and overhead in managing and using these kind of complex device ecologies, which I refer to as configuration work. It is the effort required to set up, manage, communicate, understand and use information, applications and services that are distributed over all devices in use and people involved. Because current devices and their containing software are still document- and application-centric, they fail to capture and support the rich activities and context in which they are being used. This leaves users without a stable concept for cross-device information management, forcing them to perform a large amount of manual configuration work. In this dissertation, I explore an activity-centric approach to configuration work in distributed interaction. The central goal of this dissertation is to develop and apply concepts and ideas from Activity-Centric Computing to distributed interaction. Using the triangulation approach, I explore these concepts on a conceptual, empirical and technological level and present a framework and use cases for designing activitycentric configurations in multi-device information systems. The dissertation presents two major contributions: First, I introduce the term configuration work as an abstract analytical unit that describes and captures the problems and challenges of distributed interaction. Using both empirical data and related work, I argue that configuration work is composed of: curation work, task resumption lag, mobility work, physical handling and articulation work. Using configuration work as a problem description, I operationalize Activity Theory and Activity-Centric Computing to mitigate and reduce configuration work in distributed interaction. By allowing users to interact with computational representations of their real-world activities, creating complex multi-user device ecologies and switching between cross-device information configurations will be more efficient, more effective and provide better support for users’ mental model about a multi-user and multi-device environment. Using activity configuration as a central concept, I introduce a framework that describes how digital representations of human activity can be distributed, fragmented and used across multiple devices and users. Second, I present a technical infrastructure and four applications that apply the concepts of activity configuration. The infrastructure is a general purpose platform for the design, development and deployment of distributed activitycentric systems. The infrastructure simplifies the development of activity-centric systems as it presents complex distributed computing processes and services into high level activity system abstractions. Using this infrastructure and conceptual framework, I describe four fully working applications that explore multi-device interactions in two specific domains: office work and hospital work. The systems are evaluated and tested with end-users in a number of lab and field studies

    3D Information Technologies in Cultural Heritage Preservation and Popularisation

    Get PDF
    This Special Issue of the journal Applied Sciences presents recent advances and developments in the use of digital 3D technologies to protect and preserve cultural heritage. While most of the articles focus on aspects of 3D scanning, modeling, and presenting in VR of cultural heritage objects from buildings to small artifacts and clothing, part of the issue is devoted to 3D sound utilization in the cultural heritage field

    In Homage of Change

    Get PDF

    Object detection, distributed cloud computing and parallelization techniques for autonomous driving systems.

    Get PDF
    Autonomous vehicles are increasingly becoming a necessary trend towards building the smart cities of the future. Numerous proposals have been presented in recent years to tackle particular aspects of the working pipeline towards creating a functional end-to-end system, such as object detection, tracking, path planning, sentiment or intent detection, amongst others. Nevertheless, few efforts have been made to systematically compile all of these systems into a single proposal that also considers the real challenges these systems will have on the road, such as real-time computation, hardware capabilities, etc. This paper reviews the latest techniques towards creating our own end-to-end autonomous vehicle system, considering the state-of-the-art methods on object detection, and the possible incorporation of distributed systems and parallelization to deploy these methods. Our findings show that while techniques such as convolutional neural networks, recurrent neural networks, and long short-term memory can effectively handle the initial detection and path planning tasks, more efforts are required to implement cloud computing to reduce the computational time that these methods demand. Additionally, we have mapped different strategies to handle the parallelization task, both within and between the networks

    Software architectural support for tangible user interfaces in distributed, heterogeneous computing environments

    Get PDF
    This research focuses on tools that support the development of tangible interaction-based applications for distributed computing environments. Applications built with these tools are capable of utilizing heterogeneous resources for tangible interaction and can be reconfigured for different contexts with minimal code changes. Current trends in computing, especially in areas such as computational science, scientific visualization and computer supported collaborative work, foreshadow increasing complexity, distribution and remoteness of computation and data. These trends imply that tangible interface developers must address concerns of both tangible interaction design and networked distributed computing. In this dissertation, we present a software architecture that supports separation of these concerns. Additionally, a tangibles-based software development toolkit based on this architecture is presented that enables the logic of elements within a tangible user interface to be mapped to configurations that vary in the number, type and location of resources within a given tangibles-based system

    Immersive Telepresence: A framework for training and rehearsal in a postdigital age

    Get PDF
    • 

    corecore