61 research outputs found

    Unsupervised deep learning of human brain diffusion magnetic resonance imaging tractography data

    Get PDF
    L'imagerie par résonance magnétique de diffusion est une technique non invasive permettant de connaître la microstructure organisationnelle des tissus biologiques. Les méthodes computationnelles qui exploitent la préférence orientationnelle de la diffusion dans des structures restreintes pour révéler les voies axonales de la matière blanche du cerveau sont appelées tractographie. Ces dernières années, diverses méthodes de tractographie ont été utilisées avec succès pour découvrir l'architecture de la matière blanche du cerveau. Pourtant, ces techniques de reconstruction souffrent d'un certain nombre de défauts dérivés d'ambiguïtés fondamentales liées à l'information orientationnelle. Cela a des conséquences dramatiques, puisque les cartes de connectivité de la matière blanche basées sur la tractographie sont dominées par des faux positifs. Ainsi, la grande proportion de voies invalides récupérées demeure un des principaux défis à résoudre par la tractographie pour obtenir une description anatomique fiable de la matière blanche. Des approches méthodologiques innovantes sont nécessaires pour aider à résoudre ces questions. Les progrès récents en termes de puissance de calcul et de disponibilité des données ont rendu possible l'application réussie des approches modernes d'apprentissage automatique à une variété de problèmes, y compris les tâches de vision par ordinateur et d'analyse d'images. Ces méthodes modélisent et trouvent les motifs sous-jacents dans les données, et permettent de faire des prédictions sur de nouvelles données. De même, elles peuvent permettre d'obtenir des représentations compactes des caractéristiques intrinsèques des données d'intérêt. Les approches modernes basées sur les données, regroupées sous la famille des méthodes d'apprentissage profond, sont adoptées pour résoudre des tâches d'analyse de données d'imagerie médicale, y compris la tractographie. Dans ce contexte, les méthodes deviennent moins dépendantes des contraintes imposées par les approches classiques utilisées en tractographie. Par conséquent, les méthodes inspirées de l'apprentissage profond conviennent au changement de paradigme requis, et peuvent ouvrir de nouvelles possibilités de modélisation, en améliorant ainsi l'état de l'art en tractographie. Dans cette thèse, un nouveau paradigme basé sur les techniques d'apprentissage de représentation est proposé pour générer et analyser des données de tractographie. En exploitant les architectures d'autoencodeurs, ce travail tente d'explorer leur capacité à trouver un code optimal pour représenter les caractéristiques des fibres de la matière blanche. Les contributions proposées exploitent ces représentations pour une variété de tâches liées à la tractographie, y compris (i) le filtrage et (ii) le regroupement efficace sur les résultats générés par d'autres méthodes, ainsi que (iii) la reconstruction proprement dite des fibres de la matière blanche en utilisant une méthode générative. Ainsi, les méthodes issues de cette thèse ont été nommées (i) FINTA (Filtering in Tractography using Autoencoders), (ii) CINTA (Clustering in Tractography using Autoencoders), et (iii) GESTA (Generative Sampling in Bundle Tractography using Autoencoders), respectivement. Les performances des méthodes proposées sont évaluées par rapport aux méthodes de l'état de l'art sur des données de diffusion synthétiques et des données de cerveaux humains chez l'adulte sain in vivo. Les résultats montrent que (i) la méthode de filtrage proposée offre une sensibilité et spécificité supérieures par rapport à d'autres méthodes de l'état de l'art; (ii) le regroupement des tractes dans des faisceaux est fait de manière consistante; et (iii) l'approche générative échantillonnant des tractes comble mieux l'espace de la matière blanche dans des régions difficiles à reconstruire. Enfin, cette thèse révèle les possibilités des autoencodeurs pour l'analyse des données des fibres de la matière blanche, et ouvre la voie à fournir des données de tractographie plus fiables.Abstract : Diffusion magnetic resonance imaging is a non-invasive technique providing insights into the organizational microstructure of biological tissues. The computational methods that exploit the orientational preference of the diffusion in restricted structures to reveal the brain's white matter axonal pathways are called tractography. In recent years, a variety of tractography methods have been successfully used to uncover the brain's white matter architecture. Yet, these reconstruction techniques suffer from a number of shortcomings derived from fundamental ambiguities inherent to the orientation information. This has dramatic consequences, since current tractography-based white matter connectivity maps are dominated by false positive connections. Thus, the large proportion of invalid pathways recovered remains one of the main challenges to be solved by tractography to obtain a reliable anatomical description of the white matter. Methodological innovative approaches are required to help solving these questions. Recent advances in computational power and data availability have made it possible to successfully apply modern machine learning approaches to a variety of problems, including computer vision and image analysis tasks. These methods model and learn the underlying patterns in the data, and allow making accurate predictions on new data. Similarly, they may enable to obtain compact representations of the intrinsic features of the data of interest. Modern data-driven approaches, grouped under the family of deep learning methods, are being adopted to solve medical imaging data analysis tasks, including tractography. In this context, the proposed methods are less dependent on the constraints imposed by current tractography approaches. Hence, deep learning-inspired methods are suit for the required paradigm shift, may open new modeling possibilities, and thus improve the state of the art in tractography. In this thesis, a new paradigm based on representation learning techniques is proposed to generate and to analyze tractography data. By harnessing autoencoder architectures, this work explores their ability to find an optimal code to represent the features of the white matter fiber pathways. The contributions exploit such representations for a variety of tractography-related tasks, including efficient (i) filtering and (ii) clustering on results generated by other methods, and (iii) the white matter pathway reconstruction itself using a generative method. The methods issued from this thesis have been named (i) FINTA (Filtering in Tractography using Autoencoders), (ii) CINTA (Clustering in Tractography using Autoencoders), and (iii) GESTA (Generative Sampling in Bundle Tractography using Autoencoders), respectively. The proposed methods' performance is assessed against current state-of-the-art methods on synthetic data and healthy adult human brain in vivo data. Results show that the (i) introduced filtering method has superior sensitivity and specificity over other state-of-the-art methods; (ii) the clustering method groups streamlines into anatomically coherent bundles with a high degree of consistency; and (iii) the generative streamline sampling technique successfully improves the white matter coverage in hard-to-track bundles. In summary, this thesis unlocks the potential of deep autoencoder-based models for white matter data analysis, and paves the way towards delivering more reliable tractography data

    Flexible intentions: An Active Inference theory

    Get PDF
    We present a normative computational theory of how the brain may support visually-guided goal-directed actions in dynamically changing environments. It extends the Active Inference theory of cortical processing according to which the brain maintains beliefs over the environmental state, and motor control signals try to fulfill the corresponding sensory predictions. We propose that the neural circuitry in the Posterior Parietal Cortex (PPC) compute flexible intentions—or motor plans from a belief over targets—to dynamically generate goal-directed actions, and we develop a computational formalization of this process. A proof-of-concept agent embodying visual and proprioceptive sensors and an actuated upper limb was tested on target-reaching tasks. The agent behaved correctly under various conditions, including static and dynamic targets, different sensory feedbacks, sensory precisions, intention gains, and movement policies; limit conditions were individuated, too. Active Inference driven by dynamic and flexible intentions can thus support goal-directed behavior in constantly changing environments, and the PPC might putatively host its core intention mechanism. More broadly, the study provides a normative computational basis for research on goal-directed behavior in end-to-end settings and further advances mechanistic theories of active biological systems

    Vision as inverse graphics for detailed scene understanding

    Get PDF
    An image of a scene can be described by the shape, pose and appearance of the objects within it, as well as the illumination, and the camera that captured it. A fundamental goal in computer vision is to recover such descriptions from an image. Such representations can be useful for tasks such as autonomous robotic interaction with an environment, but obtaining them can be very challenging due the large variability of objects present in natural scenes. A long-standing approach in computer vision is to use generative models of images in order to infer the descriptions that generated the image. These methods are referred to as “vision as inverse graphics” or “inverse graphics”. We propose using this approach to scene understanding by making use of a generative model (GM) in the form of a graphics renderer. Since searching over scene factors to obtain the best match for an image is very inefficient, we make use of convolutional neural networks, which we refer to as the recognition models (RM), trained on synthetic data to initialize the search. First we address the effect that occlusions on objects have on the performance of predictive models of images. We propose an inverse graphics approach to predicting the shape, pose, appearance and illumination with a GM which includes an outlier model to account for occlusions. We study how the inferences are affected by the degree of occlusion of the foreground object, and show that a robust GM which includes an outlier model to account for occlusions works significantly better than a non-robust model. We then characterize the performance of the RM and the gains that can be made by refining the search using the robust GM, using a new synthetic dataset that includes background clutter and occlusions. We find that pose and shape are predicted very well by the RM, but appearance and especially illumination less so. However, accuracy on these latter two factors can be clearly improved with the generative model. Next we apply our inverse graphics approach to scenes with multiple objects. We propose using a method to efficiently and differentiably model self shadowing which improves the realism of the GM renders. We also propose a way to render object occlusion boundaries which results in more accurate gradients of the rendering function. We evaluate these improvements using a dataset with multiple objects and show that the refinement step of the GM clearly improves on the predictions of the RM for the latent variables of shape, pose, appearance and illumination. Finally we tackle the task of learning generative models of 3D objects from a collection of meshes. We present a latent variable architecture that learns to separately capture the underlying factors of shape and appearance from the meshes. To do so we first transform the meshes of a given class to a data representation that sidesteps the need for landmark correspondences across meshes when learning the GM. The ability and usefulness of learning a disentangled latent representation of objects is demonstrated via an experiment where the appearance of one object is transferred onto the shape of another

    Deep learning-based improvement for the outcomes of glaucoma clinical trials

    Get PDF
    Glaucoma is the leading cause of irreversible blindness worldwide. It is a progressive optic neuropathy in which retinal ganglion cell (RGC) axon loss, probably as a consequence of damage at the optic disc, causes a loss of vision, predominantly affecting the mid-peripheral visual field (VF). Glaucoma results in a decrease in vision-related quality of life and, therefore, early detection and evaluation of disease progression rates is crucial in order to assess the risk of functional impairment and to establish sound treatment strategies. The aim of my research is to improve glaucoma diagnosis by enhancing state of the art analyses of glaucoma clinical trial outcomes using advanced analytical methods. This knowledge would also help better design and analyse clinical trials, providing evidence for re-evaluating existing medications, facilitating diagnosis and suggesting novel disease management. To facilitate my objective methodology, this thesis provides the following contributions: (i) I developed deep learning-based super-resolution (SR) techniques for optical coherence tomography (OCT) image enhancement and demonstrated that using super-resolved images improves the statistical power of clinical trials, (ii) I developed a deep learning algorithm for segmentation of retinal OCT images, showing that the methodology consistently produces more accurate segmentations than state-of-the-art networks, (iii) I developed a deep learning framework for refining the relationship between structural and functional measurements and demonstrated that the mapping is significantly improved over previous techniques, iv) I developed a probabilistic method and demonstrated that glaucomatous disc haemorrhages are influenced by a possible systemic factor that makes both eyes bleed simultaneously. v) I recalculated VF slopes, using the retinal never fiber layer thickness (RNFLT) from the super-resolved OCT as a Bayesian prior and demonstrated that use of VF rates with the Bayesian prior as the outcome measure leads to a reduction in the sample size required to distinguish treatment arms in a clinical trial

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Deep Boltzmann Machines as Hierarchical Generative Models of Perceptual Inference in the Cortex

    Get PDF
    The mammalian neocortex is integral to all aspects of cognition, in particular perception across all sensory modalities. Whether computational principles can be identified that would explain why the cortex is so versatile and capable of adapting to various inputs is not clear. One well-known hypothesis is that the cortex implements a generative model, actively synthesising internal explanations of the sensory input. This ‘analysis by synthesis’ could be instantiated in the top-down connections in the hierarchy of cortical regions, and allow the cortex to evaluate its internal model and thus learn good representations of sensory input over time. Few computational models however exist that implement these principles. In this thesis, we investigate the deep Boltzmann machine (DBM) as a model of analysis by synthesis in the cortex, and demonstrate how three distinct perceptual phenomena can be interpreted in this light: visual hallucinations, bistable perception, and object-based attention. A common thread is that in all cases, the internally synthesised explanations go beyond, or deviate from, what is in the visual input. The DBM was recently introduced in machine learning, but combines several properties of interest for biological application. It constitutes a hierarchical generative model and carries both the semantics of a connectionist neural network and a probabilistic model. Thus, we can consider neuronal mechanisms but also (approximate) probabilistic inference, which has been proposed to underlie cortical processing, and contribute to the ongoing discussion concerning probabilistic or Bayesian models of cognition. Concretely, making use of the model’s capability to synthesise internal representations of sensory input, we model complex visual hallucinations resulting from loss of vision in Charles Bonnet syndrome.We demonstrate that homeostatic regulation of neuronal firing could be the underlying cause, reproduce various aspects of the syndrome, and examine a role for the neuromodulator acetylcholine. Next, we relate bistable perception to approximate, sampling-based probabilistic inference, and show how neuronal adaptation can be incorporated by providing a biological interpretation for a recently developed sampling algorithm. Finally, we explore how analysis by synthesis could be related to attentional feedback processing, employing the generative aspect of the DBM to implement a form of object-based attention. We thus present a model that uniquely combines several computational principles (sampling, neural processing, unsupervised learning) and is general enough to uniquely address a range of distinct perceptual phenomena. The connection to machine learning ensures theoretical grounding and practical evaluation of the underlying principles. Our results lend further credence to the hypothesis of a generative model in the brain, and promise fruitful interaction between neuroscience and Deep Learning approaches

    Visual Processing and Latent Representations in Biological and Artificial Neural Networks

    Get PDF
    The human visual system performs the impressive task of converting light arriving at the retina into a useful representation that allows us to make sense of the visual environment. We can navigate easily in the three-dimensional world and recognize objects and their properties, even if they appear from different angles and under different lighting conditions. Artificial systems can also perform well on a variety of complex visual tasks. While they may not be as robust and versatile as their biological counterpart, they have surprising capabilities that are rapidly improving. Studying the two types of systems can help us understand what computations enable the transformation of low-level sensory data into an abstract representation. To this end, this dissertation follows three different pathways. First, we analyze aspects of human perception. The focus is on the perception in the peripheral visual field and the relation to texture perception. Our work builds on a texture model that is based on the features of a deep neural network. We start by expanding the model to the temporal domain to capture dynamic textures such as flames or water. Next, we use psychophysical methods to investigate quantitatively whether humans can distinguish natural textures from samples that were generated by a texture model. Finally, we study images that cover the entire visual field and test whether matching the local summary statistics can produce metameric images independent of the image content. Second, we compare the visual perception of humans and machines. We conduct three case studies that focus on the capabilities of artificial neural networks and the potential occurrence of biological phenomena in machine vision. We find that comparative studies are not always straightforward and propose a checklist on how to improve the robustness of the conclusions that we draw from such studies. Third, we address a fundamental discrepancy between human and machine vision. One major strength of biological vision is its robustness to changes in the appearance of image content. For example, for unusual scenarios, such as a cow on a beach, the recognition performance of humans remains high. This ability is lacking in many artificial systems. We discuss on a conceptual level how to robustly disentangle attributes that are correlated during training, and test this on a number of datasets

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments
    corecore