1,793 research outputs found

    Optimal data exchange algorithms on star graphs

    Get PDF
    AbstractStar graphs, as discussed in [1], are considered to be attractive alternatives for hypercubes. In this paper, we discuss optimal data exchange algorithms for star graphs of small dimension (n ≤ 6). In particular we study odd-distance and total exchange algorithms, using the tabular method introduced in [2]. The algorithms use no intermediate buffering of messages

    The Pilot Land Data System: Report of the Program Planning Workshops

    Get PDF
    An advisory report to be used by NASA in developing a program plan for a Pilot Land Data System (PLDS) was developed. The purpose of the PLDS is to improve the ability of NASA and NASA sponsored researchers to conduct land-related research. The goal of the planning workshops was to provide and coordinate planning and concept development between the land related science and computer science disciplines, to discuss the architecture of the PLDs, requirements for information science technology, and system evaluation. The findings and recommendations of the Working Group are presented. The pilot program establishes a limited scale distributed information system to explore scientific, technical, and management approaches to satisfying the needs of the land science community. The PLDS paves the way for a land data system to improve data access, processing, transfer, and analysis, which land sciences information synthesis occurs on a scale not previously permitted because of limits to data assembly and access

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Survey of computer programs for heat transfer analysis

    Get PDF
    An overview is presented of the current capabilities of thirty-eight computer programs that can be used for solution of heat transfer problems. These programs range from the large, general-purpose codes with a broad spectrum of capabilities, large user community and comprehensive user support (e.g., ANSYS, MARC, MITAS 2 MSC/NASTRAN, SESAM-69/NV-615) to the small, special purpose codes with limited user community such as ANDES, NNTB, SAHARA, SSPTA, TACO, TEPSA AND TRUMP. The capabilities of the programs surveyed are listed in tabular form followed by a summary of the major features of each program. As with any survey of computer programs, the present one has the following limitations: (1) It is useful only in the initial selection of the programs which are most suitable for a particular application. The final selection of the program to be used should, however, be based on a detailed examination of the documentation and the literature about the program; (2) Since computer software continually changes, often at a rapid rate, some means must be found for updating this survey and maintaining some degree of currency

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified

    The NASA computer science research program plan

    Get PDF
    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified

    The 1st Conference of PhD Students in Computer Science

    Get PDF

    Towards Automatic and Adaptive Optimizations of MPI Collective Operations

    Get PDF
    Message passing is one of the most commonly used paradigms of parallel programming. Message Passing Interface, MPI, is a standard used in scientific and high-performance computing. Collective operations are a subset of MPI standard that deals with processes synchronization, data exchange and computation among a group of processes. The collective operations are commonly used and can be application performance bottleneck. The performance of collective operations depends on many factors, some of which are the input parameters (e.g., communicator and message size); system characteristics (e.g., interconnect type); the application computation and communication pattern; and internal algorithm parameters (e.g., internal segment size). We refer to an algorithm and its internal parameters as a method. The goal of this dissertation is a performance improvement of MPI collective operations and applications that use them. In our framework, during a collective call, a system-specific decision function is invoked to select the most appropriate method for the particular collective instance. This dissertation focuses on automatic techniques for system-specific decision function generation. Our approach takes the following steps: first, we collect method performance information on the system of interest; second, we analyze this information using parallel communication models, graphical encoding methods, and decision trees; third, based on the previous step, we automatically generate the system-specific decision function to be used at run-time. In situation when a detailed performance measurement is not feasible, method performance models can be used to supplement the measured method performance information. We build and evaluate parallel communication models of 35 different collective algorithms. These models are built on top of the three commonly used point-to-point communication models, Hockney, LogGP, and PLogP.We use the method performance information on a system to build quadtrees and C4.5 decision trees of variable sizes and accuracies. The collective method selection functions are then generated automatically from these trees. Our experiments show that quadtrees of three or four levels are often enough to approximate experimentally optimal decision with a small mean performance penalty (less than 10%). The C4.5 decision trees are even more accurate (with mean performance penalty of less than 5%). The size and accuracy of C4.5 decision trees can be further improved with use of appropriate composite attributes (such as “total message size”, or “even communicator size”.) Finally, we apply these techniques to tune the collective operations on the Grig cluster at the University of Tennessee and to improve an application performance on the Cray XT4 system at Oak Ridge National Laboratory. The tuned collective is able to achieve more than 40% mean performance improvement over the native broadcast implementation. Using the platform-specific reduce on Cray XT4 lead to 10% improvement in the overall application performance. Our results show that the methods we explored are both applicable and effective for the system-specific optimizations of collective operations and are a right step toward automatically tunable, adaptive, MPI collectives
    corecore