13,316 research outputs found

    JPEG steganography with particle swarm optimization accelerated by AVX

    Get PDF
    Digital steganography aims at hiding secret messages in digital data transmitted over insecure channels. The JPEG format is prevalent in digital communication, and images are often used as cover objects in digital steganography. Optimization methods can improve the properties of images with embedded secret but introduce additional computational complexity to their processing. AVX instructions available in modern CPUs are, in this work, used to accelerate data parallel operations that are part of image steganography with advanced optimizations.Web of Science328art. no. e544

    Discrete Particle Swarm Optimization for the minimum labelling Steiner tree problem

    Get PDF
    Particle Swarm Optimization is an evolutionary method inspired by the social behaviour of individuals inside swarms in nature. Solutions of the problem are modelled as members of the swarm which fly in the solution space. The evolution is obtained from the continuous movement of the particles that constitute the swarm submitted to the effect of the inertia and the attraction of the members who lead the swarm. This work focuses on a recent Discrete Particle Swarm Optimization for combinatorial optimization, called Jumping Particle Swarm Optimization. Its effectiveness is illustrated on the minimum labelling Steiner tree problem: given an undirected labelled connected graph, the aim is to find a spanning tree covering a given subset of nodes, whose edges have the smallest number of distinct labels

    Cooperation of Nature and Physiologically Inspired Mechanism in Visualisation

    Get PDF
    A novel approach of integrating two swarm intelligence algorithms is considered, one simulating the behaviour of birds flocking (Particle Swarm Optimisation) and the other one (Stochastic Diffusion Search) mimics the recruitment behaviour of one species of ants – Leptothorax acervorum. This hybrid algorithm is assisted by a biological mechanism inspired by the behaviour of blood flow and cells in blood vessels, where the concept of high and low blood pressure is utilised. The performance of the nature-inspired algorithms and the biologically inspired mechanisms in the hybrid algorithm is reflected through a cooperative attempt to make a drawing on the canvas. The scientific value of the marriage between the two swarm intelligence algorithms is currently being investigated thoroughly on many benchmarks and the results reported suggest a promising prospect (al-Rifaie, Bishop & Blackwell, 2011). We also discuss whether or not the ‘art works’ generated by nature and biologically inspired algorithms can possibly be considered as ‘computationally creative’

    A Stochastic Team Formation Approach for Collaborative Mobile Crowdsourcing

    Full text link
    Mobile Crowdsourcing (MCS) is the generalized act of outsourcing sensing tasks, traditionally performed by employees or contractors, to a large group of smart-phone users by means of an open call. With the increasing complexity of the crowdsourcing applications, requesters find it essential to harness the power of collaboration among the workers by forming teams of skilled workers satisfying their complex tasks' requirements. This type of MCS is called Collaborative MCS (CMCS). Previous CMCS approaches have mainly focused only on the aspect of team skills maximization. Other team formation studies on social networks (SNs) have only focused on social relationship maximization. In this paper, we present a hybrid approach where requesters are able to hire a team that, not only has the required expertise, but also is socially connected and can accomplish tasks collaboratively. Because team formation in CMCS is proven to be NP-hard, we develop a stochastic algorithm that exploit workers knowledge about their SN neighbors and asks a designated leader to recruit a suitable team. The proposed algorithm is inspired from the optimal stopping strategies and uses the odds-algorithm to compute its output. Experimental results show that, compared to the benchmark exponential optimal solution, the proposed approach reduces computation time and produces reasonable performance results.Comment: This paper is accepted for publication in 2019 31st International Conference on Microelectronics (ICM

    Variable neighbourhood search for the minimum labelling Steiner tree problem

    Get PDF
    We present a study on heuristic solution approaches to the minimum labelling Steiner tree problem, an NP-hard graph problem related to the minimum labelling spanning tree problem. Given an undirected labelled connected graph, the aim is to find a spanning tree covering a given subset of nodes of the graph, whose edges have the smallest number of distinct labels. Such a model may be used to represent many real world problems in telecommunications and multimodal transportation networks. Several metaheuristics are proposed and evaluated. The approaches are compared to the widely adopted Pilot Method and it is shown that the Variable Neighbourhood Search metaheuristic is the most effective approach to the problem, obtaining high quality solutions in short computational running times

    A Review on the Application of Natural Computing in Environmental Informatics

    Get PDF
    Natural computing offers new opportunities to understand, model and analyze the complexity of the physical and human-created environment. This paper examines the application of natural computing in environmental informatics, by investigating related work in this research field. Various nature-inspired techniques are presented, which have been employed to solve different relevant problems. Advantages and disadvantages of these techniques are discussed, together with analysis of how natural computing is generally used in environmental research.Comment: Proc. of EnviroInfo 201

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin
    • …
    corecore