73,993 research outputs found

    Attentive Single-Tasking of Multiple Tasks

    Full text link
    In this work we address task interference in universal networks by considering that a network is trained on multiple tasks, but performs one task at a time, an approach we refer to as "single-tasking multiple tasks". The network thus modifies its behaviour through task-dependent feature adaptation, or task attention. This gives the network the ability to accentuate the features that are adapted to a task, while shunning irrelevant ones. We further reduce task interference by forcing the task gradients to be statistically indistinguishable through adversarial training, ensuring that the common backbone architecture serving all tasks is not dominated by any of the task-specific gradients. Results in three multi-task dense labelling problems consistently show: (i) a large reduction in the number of parameters while preserving, or even improving performance and (ii) a smooth trade-off between computation and multi-task accuracy. We provide our system's code and pre-trained models at http://vision.ee.ethz.ch/~kmaninis/astmt/.Comment: CVPR 2019 Camera Read

    A deep learning framework for quality assessment and restoration in video endoscopy

    Full text link
    Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treatment. Artifacts such as motion blur, bubbles, specular reflections, floating objects and pixel saturation impede the visual interpretation and the automated analysis of endoscopy videos. Given the widespread use of endoscopy in different clinical applications, we contend that the robust and reliable identification of such artifacts and the automated restoration of corrupted video frames is a fundamental medical imaging problem. Existing state-of-the-art methods only deal with the detection and restoration of selected artifacts. However, typically endoscopy videos contain numerous artifacts which motivates to establish a comprehensive solution. We propose a fully automatic framework that can: 1) detect and classify six different primary artifacts, 2) provide a quality score for each frame and 3) restore mildly corrupted frames. To detect different artifacts our framework exploits fast multi-scale, single stage convolutional neural network detector. We introduce a quality metric to assess frame quality and predict image restoration success. Generative adversarial networks with carefully chosen regularization are finally used to restore corrupted frames. Our detector yields the highest mean average precision (mAP at 5% threshold) of 49.0 and the lowest computational time of 88 ms allowing for accurate real-time processing. Our restoration models for blind deblurring, saturation correction and inpainting demonstrate significant improvements over previous methods. On a set of 10 test videos we show that our approach preserves an average of 68.7% which is 25% more frames than that retained from the raw videos.Comment: 14 page

    AutoDiscern: Rating the Quality of Online Health Information with Hierarchical Encoder Attention-based Neural Networks

    Get PDF
    Patients increasingly turn to search engines and online content before, or in place of, talking with a health professional. Low quality health information, which is common on the internet, presents risks to the patient in the form of misinformation and a possibly poorer relationship with their physician. To address this, the DISCERN criteria (developed at University of Oxford) are used to evaluate the quality of online health information. However, patients are unlikely to take the time to apply these criteria to the health websites they visit. We built an automated implementation of the DISCERN instrument (Brief version) using machine learning models. We compared the performance of a traditional model (Random Forest) with that of a hierarchical encoder attention-based neural network (HEA) model using two language embeddings, BERT and BioBERT. The HEA BERT and BioBERT models achieved average F1-macro scores across all criteria of 0.75 and 0.74, respectively, outperforming the Random Forest model (average F1-macro = 0.69). Overall, the neural network based models achieved 81% and 86% average accuracy at 100% and 80% coverage, respectively, compared to 94% manual rating accuracy. The attention mechanism implemented in the HEA architectures not only provided 'model explainability' by identifying reasonable supporting sentences for the documents fulfilling the Brief DISCERN criteria, but also boosted F1 performance by 0.05 compared to the same architecture without an attention mechanism. Our research suggests that it is feasible to automate online health information quality assessment, which is an important step towards empowering patients to become informed partners in the healthcare process
    • …
    corecore