59,854 research outputs found

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Characterization of a defective PbWO4 crystal cut along the a-c crystallographic plane: structural assessment and a novel photoelastic stress analysis

    Full text link
    Among scintillators, the PWO is one of the most widely used, for instance in CMS calorimeter at CERN and PANDA project. Crystallographic structure and chemical composition as well as residual stress condition, are indicators of homogeneity and good quality of the crystal. In this paper, structural characterization of a defective PbWO4 (PWO) crystal has been performed by X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Photoelasticity in the unusual a-c crystallographic plane. XRD and EDS analysis have been used to investigate crystallographic orientation and chemical composition, while stress distribution, which indicates macroscopic inhomogeneities and defects, has been obtained by photoelastic approaches, in Conoscopic and Sphenoscopic configuration. Since the sample is cut along the a-c crystallographic plane, a new method is proposed for the interpretation of the fringe pattern. The structural analysis has detected odds from the nominal lattice dimension, which can be attributed to the strong presence of Pb and W. A strong inhomogeneity over the crystal sample has been revealed by the photoelastic inspection. The results give reliability to the proposed procedure which is exploitable in crystals with other structures.Comment: 18 pages, 10 figures, revised versio

    Development of an ontology supporting failure analysis of surface safety valves used in Oil & Gas applications

    Get PDF
    Treball desenvolupat dins el marc del programa 'European Project Semester'.The project describes how to apply Root Cause Analysis (RCA) in the form of a Failure Mode Effect and Criticality Analysis (FMECA) on hydraulically actuated Surface Safety Valves (SSVs) of Xmas trees in oil and gas applications, in order to be able to predict the occurrence of failures and implement preventive measures such as Condition and Performance Monitoring (CPM) to improve the life-span of a valve and decrease maintenance downtime. In the oil and gas industry, valves account for 52% of failures in the system. If these failures happen unexpectedly it can cause a lot of problems. Downtime of the oil well quickly becomes an expensive problem, unscheduled maintenance takes a lot of extra time and the lead-time for replacement parts can be up to 6 months. This is why being able to predict these failures beforehand is something that can bring a lot of benefits to a company. To determine the best course of action to take in order to be able to predict failures, a FMECA report is created. This is an analysis where all possible failures of all components are catalogued and given a Risk Priority Number (RPN), which has three variables: severity, detectability and occurrence. Each of these is given a rating between 0 and 10 and then the variables are multiplied with each other, resulting in the RPN. The components with an RPN above an acceptable risk level are then further investigated to see how to be able to detect them beforehand and how to mitigate the risk that they pose. Applying FMECA to the SSV mean breaking the system down into its components and determining the function, dependency and possible failures. To this end, the SSV is broken up into three sub-systems: the valve, the actuator and the hydraulic system. The hydraulic system is the sub-system of the SSV responsible for containing, transporting and pressurizing of the hydraulic fluid and in turn, the actuator. It also contains all the safety features, such as pressure pilots, and a trip system in case a problem is detected in the oil line. The actuator is, as the name implies, the sub-system which opens and closes the valve. It is made up of a number of parts such as a cylinder, a piston and a spring. These parts are interconnected in a number of ways to allow the actuator to successfully perform its function. The valve is the actual part of the system which interacts with the oil line by opening and closing. Like the actuator, this sub-system is broken down into a number of parts which work together to perform its function. After breaking down and defining each subsystem on a functional level, a model was created using a functional block diagram. Each component also allows for the defining of dependencies and interactions between the different components and a failure diagram for each component. This model integrates the three sub-systems back into one, creating a complete picture of the entire system which can then be used to determine the effects of different failures in components to the rest of the system. With this model completed we created a comprehensive FMECA report and test the different possible CPM solutions to mitigate the largest risks

    An Empirical analysis of Open Source Software Defects data through Software Reliability Growth Models

    Get PDF
    The purpose of this study is to analyze the reliability growth of Open Source Software (OSS) using Software Reliability Growth Models (SRGM). This study uses defects data of twenty five different releases of five OSS projects. For each release of the selected projects two types of datasets have been created; datasets developed with respect to defect creation date (created date DS) and datasets developed with respect to defect updated date (updated date DS). These defects datasets are modelled by eight SRGMs; Musa Okumoto, Inflection S-Shaped, Goel Okumoto, Delayed S-Shaped, Logistic, Gompertz, Yamada Exponential, and Generalized Goel Model. These models are chosen due to their widespread use in the literature. The SRGMs are fitted to both types of defects datasets of each project and the their fitting and prediction capabilities are analysed in order to study the OSS reliability growth with respect to defects creation and defects updating time because defect analysis can be used as a constructive reliability predictor. Results show that SRGMs fitting capabilities and prediction qualities directly increase when defects creation date is used for developing OSS defect datasets to characterize the reliability growth of OSS. Hence OSS reliability growth can be characterized with SRGM in a better way if the defect creation date is taken instead of defects updating (fixing) date while developing OSS defects datasets in their reliability modellin
    • 

    corecore