104,223 research outputs found

    Recurrent Relational Networks

    Full text link
    This paper is concerned with learning to solve tasks that require a chain of interdependent steps of relational inference, like answering complex questions about the relationships between objects, or solving puzzles where the smaller elements of a solution mutually constrain each other. We introduce the recurrent relational network, a general purpose module that operates on a graph representation of objects. As a generalization of Santoro et al. [2017]'s relational network, it can augment any neural network model with the capacity to do many-step relational reasoning. We achieve state of the art results on the bAbI textual question-answering dataset with the recurrent relational network, consistently solving 20/20 tasks. As bAbI is not particularly challenging from a relational reasoning point of view, we introduce Pretty-CLEVR, a new diagnostic dataset for relational reasoning. In the Pretty-CLEVR set-up, we can vary the question to control for the number of relational reasoning steps that are required to obtain the answer. Using Pretty-CLEVR, we probe the limitations of multi-layer perceptrons, relational and recurrent relational networks. Finally, we show how recurrent relational networks can learn to solve Sudoku puzzles from supervised training data, a challenging task requiring upwards of 64 steps of relational reasoning. We achieve state-of-the-art results amongst comparable methods by solving 96.6% of the hardest Sudoku puzzles.Comment: Accepted at NIPS 201

    Neural Network Augmented Physics Models for Systems with Partially Unknown Dynamics: Application to Slider-Crank Mechanism

    Full text link
    Dynamic models of mechatronic systems are abundantly used in the context of motion control and design of complex servo applications. In practice, these systems are often plagued by unknown interactions, which make the physics-based relations of the system dynamics only partially known. This paper presents a neural network augmented physics (NNAP) model as a combination of physics-inspired and neural layers. The neural layers are inserted in the model to compensate for the unmodeled interactions, without requiring direct measurements of these unknown phenomena. In contrast to traditional approaches, both the neural network and physical parameters are simultaneously optimized, solely by using state and control input measurements. The methodology is applied on experimental data of a slider-crank setup for which the state dependent load interactions are unknown. The NNAP model proves to be a stable and accurate modeling formalism for dynamic systems that ab initio can only be partially described by physical laws. Moreover, the results show that a recurrent implementation of the NNAP model enables improved robustness and accuracy of the system state predictions, compared to its feedforward counterpart. Besides capturing the system dynamics, the NNAP model provides a means to gain new insights by extracting the neural network from the converged NNAP model. In this way, we discovered accurate representations of the unknown spring force interaction and friction phenomena acting on the slider mechanism

    Stability analysis of recurrent neural networks using dissipativity

    Get PDF
    The purpose of this work is to describe how dissipativity theory can be used for the stability analysis of discrete-time recurrent neural networks and to propose a training algorithm for producing stable networks. Using dissipativity theory, we have found conditions for the globally asymptotic stability of equilibrium points of Layered Digital Dynamic Networks (LDDNs), a very general class of recurrent neural networks. The LDDNs are transformed into a standard interconnected system structure, and a fundamental theorem describing the stability of interconnected dissipative systems is applied. The theorem leads to several new sufficient conditions for the stability of equilibrium points for LDDNs. These conditions are demonstrated on several test problems and compared to previously proposed stability conditions. From these novel stability criteria, we propose a new algorithm to train stable recurrent neural networks. The standard mean square error performance index is modified to include stability criteria. This requires computation of the derivative of the maximum eigenvalue of a matrix with respect to neural network weights. The new training algorithm is tested on two examples of neural network-based model reference control systems, including a magnetic levitation system

    Improvement of voltage stability for grid connected solar photovoltaic systems using static synchronous compensator with recurrent neural network

    Get PDF
    Purpose. This article proposes a new control strategy for static synchronous compensator in utility grid system. The proposed photovoltaic fed static synchronous compensator is utilized along with recurrent neural network based reference voltage generation is presented in grid system network. The novelty of the proposed work consists in presenting a Landsman converter enhanced photovoltaic fed static synchronous compensator with recurrent neural network algorithm, to generate voltage and maintain the voltage-gain ratio. Methods. The proposed algorithm which provides sophisticated and cost-effective solution for utilization of adaptive neuro-fuzzy inference system as maximum power point tracking assures controlled output and supports the extraction of complete power from the photovoltaic panel. Grid is interconnected with solar power, voltage phase angle mismatch, harmonic and voltage instability may occur in the distribution grid. The proposed control technique strategy is validated using MATLAB/Simulink software and hardware model to analysis the working performances. Results. The results obtained show that the power quality issue, the proposed system to overcome through elimination of harmonics, reference current generation is necessary, which is accomplished by recurrent neural network. By recurrent neural network, the reference signal is generated more accurately and accordingly the pulses are generated for controlling the inverter. Originality. Compensation of power quality issues, grid stability and harmonic reduction in distribution network by using photovoltaic fed static synchronous compensator is utilized along with recurrent neural network controller. Practical value. The work concerns the comparative study and the application of static synchronous compensator with recurrent neural network controller to achieve a good performance control system of the distribution network system. This article presents a comparative study between the conventional static synchronous compensator, static synchronous compensator with recurrent neural network and hardware implementation with different load. The strategy based on the use of a static synchronous compensator with recurrent neural network algorithm for the control of the continuous voltage stability and harmonic for the distribution network-linear as well as non-linear loads in efficient manner. The study is validated by the simulation results based on MATLAB/Simulink software and hardware model.Мета. У статті пропонується нова стратегія управління статичним синхронним компенсатором в енергосистемі. Запропонований статичний синхронний компенсатор з живленням від фотоелектричних елементів використовується разом з генератором опорної напруги на основі нейронної рекурентної мережі, представленим в мережі енергосистеми. Новизна запропонованої роботи полягає у поданні статичного синхронного компенсатора з покращеним фотоелектричним перетворювачем Ландсмана з алгоритмом рекурентної нейронної мережі для генерації напруги та підтримки коефіцієнта посилення за напругою. Методи. Запропонований алгоритм, який забезпечує ефективне та економічне рішення для використання адаптивної нейро-нечіткої системи логічного виведення як відстеження точки максимальної потужності, забезпечує контрольований вихід та підтримує вилучення повної потужності з фотогальванічної панелі. Мережа взаємопов’язана із сонячною енергією, у розподільній мережі можуть виникати невідповідність фазового кута напруги, гармоніки та нестабільність напруги. Запропонована стратегія методу управління перевіряється з використанням моделей програмного забезпечення MATLAB/Simulink та апаратного забезпечення для аналізу робочих характеристик. Результати. Отримані результати показують, що проблема якості електроенергії, яку запропонована система долає за допомогою усунення гармонік,потребує генерації еталонного струму, що здійснюється рекурентною нейронної мережею. За допомогою рекурентної нейронної мережі більш точно формується еталонний сигнал і відповідно генеруються імпульси для керування інвертором. Оригінальність. Компенсація проблем з якістю електроенергії, стабільністю мережі та зниженням гармонік у розподільній мережі за допомогою статичного синхронного компенсатора з фотоелектричним живленням використовується разом із контролером рекурентної нейронної мережі. Практична цінність. Робота стосується порівняльного дослідження та застосування статичного синхронного компенсатора з рекурентним нейромережевим контролером для досягнення хорошої продуктивності системи управління системою розподільної мережі. У цій статті представлено порівняльне дослідження традиційного статичного синхронного компенсатора, статичного синхронного компенсатора з рекурентною нейронною мережею та апаратною реалізацією з різним навантаженням. Стратегія, що ґрунтується на використанні статичного синхронного компенсатора з рекурентним алгоритмом нейронної мережі для ефективного контролю стабільності постійної напруги та гармонік для лінійних та нелінійних навантажень розподільної мережі. Дослідження підтверджується результатами моделювання з урахуванням програмно-апаратної моделі MATLAB/Simulink

    On Neural Network Identification for Low-Speed Ship Maneuvering Model

    Full text link
    Several studies on ship maneuvering models have been conducted using captive model tests or computational fluid dynamics (CFD) and physical models, such as the maneuvering modeling group (MMG) model. A new system identification method for generating a low-speed maneuvering model using recurrent neural networks (RNNs) and free running model tests is proposed in this study. We especially focus on a low-speed maneuver such as the final phase in berthing to achieve automatic berthing control. Accurate dynamic modeling with minimum modeling error is highly desired to establish a model-based control system. We propose a new loss function that reduces the effect of the noise included in the training data. Besides, we revealed the following facts - an RNN that ignores the memory before a certain time improved the prediction accuracy compared with the "standard" RNN, and the random maneuver test was effective in obtaining an accurate berthing maneuver model. In addition, several low-speed free running model tests were performed for the scale model of the M.V. Esso Osaka. As a result, this paper showed that the proposed method using a neural network model could accurately represent low-speed maneuvering motions.Comment: 13 pages, 7 figures, submitted to Journal of Marine Science and Technology for peer-revie

    Nonlinear system identification for predictive control using continuous time recurrent neural networks and automatic differentiation

    Get PDF
    In this paper, a continuous time recurrent neural network (CTRNN) is developed to be used in nonlinear model predictive control (NMPC) context. The neural network represented in a general nonlinear state-space form is used to predict the future dynamic behavior of the nonlinear process in real time. An efficient training algorithm for the proposed network is developed using automatic differentiation (AD) techniques. By automatically generating Taylor coefficients, the algorithm not only solves the differentiation equations of the network but also produces the sensitivity for the training problem. The same approach is also used to solve the online optimization problem in the predictive controller. The proposed neural network and the nonlinear predictive controller were tested on an evaporation case study. A good model fitting for the nonlinear plant is obtained using the new method. A comparison with other approaches shows that the new algorithm can considerably reduce network training time and improve solution accuracy. The CTRNN trained is used as an internal model in a predictive controller and results in good performance under different operating conditions

    Recurrent Interval Type-2 Fuzzy Wavelet Neural Network with Stable Learning Algorithm: Application to Model-Based Predictive Control

    Get PDF
    Fuzzy neural networks, with suitable learning strategy, have been demonstrated as an effective tool for online data modeling. However, it is a challenging task to construct a model to ensure its quality and stability for non-stationary dynamic systems with some uncertainties. To solve this problem, this paper presents a novel identification model based on recurrent interval type-2 fuzzy wavelet neural network (RIT2FWNN) with new learning algorithm. The model benefits from both advantages of recurrent and wavelet neural networks such as use of temporal data and fast convergence properties. The proposed antecedent and consequent parameters update rules are derived using sliding-mode-control-theory. To evaluate the proposed fuzzy model, it is utilized to design a nonlinear model-based predictive controller and is applied for the synchronization of fractional-order time-delay chaotic systems. Using Lyapunov stability analysis, it is shown that all update rules of the parameters are uniformly ultimately bounded. The adaptation laws obtained in this method are very simple and have closed forms. Some stability conditions are derived to prove learning dynamics and asymptotic stability of the network by using an appropriate Lyapunov function. The efficacy and performance of the proposed method is verified by simulation examples

    Intrusion Detection in SDN-Based Networks: Deep Recurrent Neural Network Approach

    Get PDF
    Software Defined Networking (SDN) is emerging as a key technology for future Internet. SDN provides a global network along with the capability to dynamically control network flow. One key advantage of SDN, as compared to the traditional network, is that by virtue of centralized control it allows better provisioning of network security. Nevertheless, the flexibility provided by SDN architecture manifests several new network security issues that must be addressed to strengthen SDN network security. So, in this paper, we propose a Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) enabled intrusion detection system for SDN. The proposed approach was tested using the NSL-KDD and CICIDS2017 dataset, and we achieved an accuracy of 89% and 99% respectively with low dimensional feature sets that can be extracted at the SDN controller. We also evaluated network performance of our proposed approach in terms of throughput and latency. Our test results show that the proposed GRU-RNN model does not deteriorate the network performance. Through extensive experimental evaluation, we conclude that our proposed approach exhibits a strong potential for intrusion detection in the SDN environments

    Implementation of Recurrent Neural Network to Control Rotational Inverted Pendulum using IMC Scheme

    Get PDF
    Abstract: Problem statement:This paper presents an overview of a controller for a Rotational Inverted Pendulum (RIP) based on a New Recurrent Neural Network (NRNN) using Internal Model control (IMC). The RIP consists of a DC servo motor, arm and pendulum. The RIP is modelled in MATLAB/Simulink and the simulation results are shown besides the experimental results. The proposed experiment shows intelligent method for stabilizing the RIP, which can recommend the control designers of nonlinear systems. The outcome exposed that the NRNN controller competent of controlling the RIP system productively, as exposed in the simulation results
    corecore