20,209 research outputs found

    The aptness of tangible user interfaces for explaining abstract computer network principles

    Get PDF
    The technological deployment of Tangible User Interfaces (TUI) with their intrinsic ability to interlink the physical and digital domains, have steadily gained interest within the educational sector. As a concrete example of Reality Based Interaction, such digital manipulatives have been successfully implemented in the past years to introduce scientific and engineering concepts at earlier stages throughout the educational cycle. With difference to literature, this research investigates the suitability and effectiveness of implementing a TUI system to enhance the learning experience in a higher education environment. The proposal targets the understanding of advanced computer networking principles by the deployment of an interactive table-top system. Beyond the mere simulation and modelling of networking topologies, the design presents students the ability to directly interact with and visualise the protocol execution, hence augmenting their ability to understand the abstract nature of such algorithms. Following deployment of the proposed innovate prototype within the delivery of a university undergraduate programme, the quantitative effectiveness of this novel methodology will be assessed from both a teaching and learning perspective on its ability to convey the abstract notions of computer network principles

    The aptness of tangible user interfaces for explaining abstract computer network principles

    Get PDF
    The technological deployment of Tangible User Interfaces (TUI) with their intrinsic ability to interlink the physical and digital domains, have steadily gained interest within the educational sector. As a concrete example of Reality Based Interaction, such digital manipulatives have been successfully implemented in the past years to introduce scientific and engineering concepts at earlier stages throughout the educational cycle. With difference to literature, this research investigates the suitability and effectiveness of implementing a TUI system to enhance the learning experience in a higher education environment. The proposal targets the understanding of advanced computer networking principles by the deployment of an interactive table-top system. Beyond the mere simulation and modelling of networking topologies, the design presents students the ability to directly interact with and visualise the protocol execution, hence augmenting their ability to understand the abstract nature of such algorithms. Following deployment of the proposed innovate prototype within the delivery of a university undergraduate programme, the quantitative effectiveness of this novel methodology will be assessed from both a teaching and learning perspective on its ability to convey the abstract notions of computer network principles

    Proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET 2013)

    Get PDF
    "This book contains the proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET) 2013 which was held on 16.-17.September 2013 in Paphos (Cyprus) in conjunction with the EC-TEL conference. The workshop and hence the proceedings are divided in two parts: on Day 1 the EuroPLOT project and its results are introduced, with papers about the specific case studies and their evaluation. On Day 2, peer-reviewed papers are presented which address specific topics and issues going beyond the EuroPLOT scope. This workshop is one of the deliverables (D 2.6) of the EuroPLOT project, which has been funded from November 2010 – October 2013 by the Education, Audiovisual and Culture Executive Agency (EACEA) of the European Commission through the Lifelong Learning Programme (LLL) by grant #511633. The purpose of this project was to develop and evaluate Persuasive Learning Objects and Technologies (PLOTS), based on ideas of BJ Fogg. The purpose of this workshop is to summarize the findings obtained during this project and disseminate them to an interested audience. Furthermore, it shall foster discussions about the future of persuasive technology and design in the context of learning, education and teaching. The international community working in this area of research is relatively small. Nevertheless, we have received a number of high-quality submissions which went through a peer-review process before being selected for presentation and publication. We hope that the information found in this book is useful to the reader and that more interest in this novel approach of persuasive design for teaching/education/learning is stimulated. We are very grateful to the organisers of EC-TEL 2013 for allowing to host IWEPLET 2013 within their organisational facilities which helped us a lot in preparing this event. I am also very grateful to everyone in the EuroPLOT team for collaborating so effectively in these three years towards creating excellent outputs, and for being such a nice group with a very positive spirit also beyond work. And finally I would like to thank the EACEA for providing the financial resources for the EuroPLOT project and for being very helpful when needed. This funding made it possible to organise the IWEPLET workshop without charging a fee from the participants.

    21st Century Simulation: Exploiting High Performance Computing and Data Analysis

    Get PDF
    This paper identifies, defines, and analyzes the limitations imposed on Modeling and Simulation by outmoded paradigms in computer utilization and data analysis. The authors then discuss two emerging capabilities to overcome these limitations: High Performance Parallel Computing and Advanced Data Analysis. First, parallel computing, in supercomputers and Linux clusters, has proven effective by providing users an advantage in computing power. This has been characterized as a ten-year lead over the use of single-processor computers. Second, advanced data analysis techniques are both necessitated and enabled by this leap in computing power. JFCOM's JESPP project is one of the few simulation initiatives to effectively embrace these concepts. The challenges facing the defense analyst today have grown to include the need to consider operations among non-combatant populations, to focus on impacts to civilian infrastructure, to differentiate combatants from non-combatants, and to understand non-linear, asymmetric warfare. These requirements stretch both current computational techniques and data analysis methodologies. In this paper, documented examples and potential solutions will be advanced. The authors discuss the paths to successful implementation based on their experience. Reviewed technologies include parallel computing, cluster computing, grid computing, data logging, OpsResearch, database advances, data mining, evolutionary computing, genetic algorithms, and Monte Carlo sensitivity analyses. The modeling and simulation community has significant potential to provide more opportunities for training and analysis. Simulations must include increasingly sophisticated environments, better emulations of foes, and more realistic civilian populations. Overcoming the implementation challenges will produce dramatically better insights, for trainees and analysts. High Performance Parallel Computing and Advanced Data Analysis promise increased understanding of future vulnerabilities to help avoid unneeded mission failures and unacceptable personnel losses. The authors set forth road maps for rapid prototyping and adoption of advanced capabilities. They discuss the beneficial impact of embracing these technologies, as well as risk mitigation required to ensure success
    corecore