130 research outputs found

    Towards defining biomarkers to evaluate concussions using virtual reality and a moving platform (BioVRSea)

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Current diagnosis of concussion relies on self-reported symptoms and medical records rather than objective biomarkers. This work uses a novel measurement setup called BioVRSea to quantify concussion status. The paradigm is based on brain and muscle signals (EEG, EMG), heart rate and center of pressure (CoP) measurements during a postural control task triggered by a moving platform and a virtual reality environment. Measurements were performed on 54 professional athletes who self-reported their history of concussion or non-concussion. Both groups completed a concussion symptom scale (SCAT5) before the measurement. We analyzed biosignals and CoP parameters before and after the platform movements, to compare the net response of individual postural control. The results showed that BioVRSea discriminated between the concussion and non-concussion groups. Particularly, EEG power spectral density in delta and theta bands showed significant changes in the concussion group and right soleus median frequency from the EMG signal differentiated concussed individuals with balance problems from the other groups. Anterior–posterior CoP frequency-based parameters discriminated concussed individuals with balance problems. Finally, we used machine learning to classify concussion and non-concussion, demonstrating that combining SCAT5 and BioVRSea parameters gives an accuracy up to 95.5%. This study is a step towards quantitative assessment of concussion.Peer reviewe

    Neurobiological markers for remission and persistence of childhood attention-deficit/hyperactivity disorder

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in children. Symptoms of childhood ADHD persist into adulthood in around 65% of patients, which elevates the risk for a number of adverse outcomes, resulting in substantial individual and societal burden. A neurodevelopmental double dissociation model is proposed based on existing studies in which the early onset of childhood ADHD is suggested to associate with dysfunctional subcortical structures that remain static throughout the lifetime; while diminution of symptoms over development could link to optimal development of prefrontal cortex. Current existing studies only assess basic measures including regional brain activation and connectivity, which have limited capacity to characterize the functional brain as a high performance parallel information processing system, the field lacks systems-level investigations of the structural and functional patterns that significantly contribute to the symptom remission and persistence in adults with childhood ADHD. Furthermore, traditional statistical methods estimate group differences only within a voxel or region of interest (ROI) at a time without having the capacity to explore how ROIs interact in linear and/or non-linear ways, as they quickly become overburdened when attempting to combine predictors and their interactions from high-dimensional imaging data set. This dissertation is the first study to apply ensemble learning techniques (ELT) in multimodal neuroimaging features from a sample of adults with childhood ADHD and controls, who have been clinically followed up since childhood. A total of 36 adult probands who were diagnosed with ADHD combined-type during childhood and 36 matched normal controls (NCs) are involved in this dissertation research. Thirty-six adult probands are further split into 18 remitters (ADHD-R) and 18 persisters (ADHD-P) based on the symptoms in their adulthood from DSM-IV ADHD criteria. Cued attention task-based fMRI, structural MRI, and diffusion tensor imaging data from each individual are analyzed. The high-dimensional neuroimaging features, including pair-wise regional connectivity and global/nodal topological properties of the functional brain network for cue-evoked attention process, regional cortical thickness and surface area, subcortical volume, volume and fractional anisotropy of major white matter fiber tract for each subject are calculated. In addition, all the currently available optimization strategies for ensemble learning techniques (i.e., voting, bagging, boosting and stacking techniques) are tested in a pool of semi-final classification results generated by seven basic classifiers, including K-Nearest Neighbors, support vector machine (SVM), logistic regression, Naïve Bayes, linear discriminant analysis, random forest, and multilayer perceptron. As hypothesized, results indicate that the features of nodal efficiency in right inferior frontal gyrus, right middle frontal (MFG)-inferior parietal (IPL) functional connectivity, and right amygdala volume significantly contributed to accurate discrimination between ADHD probands and controls; higher nodal efficiency of right MFG greatly contributed to inattentive and hyperactive/impulsive symptom remission, while higher right MFG-IPL functional connectivity strongly linked to symptom persistence in adults with childhood ADHD. The utilization of ELTs indicates that the bagging-based ELT with the base model of SVM achieves the best results, with the most significant improvement of the area under the receiver of operating characteristic curve (0.89 for ADHD probands vs. NCs, and 0.9 for ADHD-P vs. ADHD-R). The outcomes of this dissertation research have considerable value for the development of novel interventions that target mechanisms associated with recovery

    Desenvolvendo um benchmark para deep learning sobre a plataforma Jetson TX2

    Get PDF
    TCC(graduação) - Universidade Federal de Santa Catarina. Centro Tecnológico. Ciências da Computação.Com os recentes avanços nas áreas de navegação visual e inteligência artificial (deep learning), diversas áreas sofrem mudanças quanto ao modo de atacar e solucionar os problemas nelas existentes, como é o caso da área de navegação visual e veículos autônomos. Porém, não só técnicas teóricas tem avançado como também sistemas embarcados com foco em acelerar a prototipação de novas soluções vem acompanhando as novas mudanças. O presente trabalho tem como foco desenvolver um benchmark sobre sistemas embarcados especializados em algoritmos de inteligência artificial, realizando um estudo comparativo de modelos alinhados ao estado da arte, sobre a plataforma Jetson TX2, auxiliando a tomada de decisão quanto as ferramentas mais apropriadas para implementação de aplicações reais sobre a área de deep learning, como é o caso de carros autônomos

    A machine learning framework for automatic human activity classification from wearable sensors

    Get PDF
    Wearable sensors are becoming increasingly common and they permit the capture of physiological data during exercise, recuperation and everyday activities. This work investigated and advanced the current state-of-the-art in machine learning technology for the automatic classification of captured physiological data from wearable sensors. The overall goal of the work presented here is to research and investigate every aspect of the technology and methods involved in this field and to create a framework of technology that can be utilised on low-cost platforms across a wide range of activities. Both rudimentary and advanced techniques were compared, including those that allowed for both real-time processing on an android platform and highly accurate postprocessing on a desktop computer. State-of-the-art feature extraction methods such as Fourier and Wavelet analysis were also researched to ascertain how well they could extract discriminative physiological information. Various classifiers were investigated in terms of their ability to work with different feature extraction methods. Consequently, complex classification fusion models were created to increase the overall accuracy of the activity recognition process. Genetic algorithms were also employed to optimise classifier parameter selection in the multidimensional search space. Large annotated sporting activity datasets were created for a range of sports that allowed different classification models to be compared. This allowed for a machine learning framework to be constructed that could potentially create accurate models when applied to any unknown dataset. This framework was also successfully applied to medical and everyday-activity datasets confirming that the approach could be deployed in different application settings

    An Extreme Value Theory Model of Cross-Modal Sensory Information Integration in Modulation of Vertebrate Visual System Functions

    Get PDF
    We propose a computational model of vision that describes the integration of cross-modal sensory information between the olfactory and visual systems in zebrafish based on the principles of the statistical extreme value theory. The integration of olfacto-retinal information is mediated by the centrifugal pathway that originates from the olfactory bulb and terminates in the neural retina. Motivation for using extreme value theory stems from physiological evidence suggesting that extremes and not the mean of the cell responses direct cellular activity in the vertebrate brain. We argue that the visual system, as measured by retinal ganglion cell responses in spikes/sec, follows an extreme value process for sensory integration and the increase in visual sensitivity from the olfactory input can be better modeled using extreme value distributions. As zebrafish maintains high evolutionary proximity to mammals, our model can be extended to other vertebrates as well

    Smart kitchen for Ambient Assisted Living

    Get PDF
    El envejecimiento de la población es una realidad en todos los países desarrollados. Las predicciones de crecimiento de esta población son alarmantes, planteando un reto para los servicios sociales y sanitarios. Las personas ancianas padecen diversas discapacidades que se van acentuando con la edad, siendo más propensas a sufrir accidentes domésticos, presentando problemas para realizar tareas cotidianas, etc. Esta situación conlleva a una pérdida paulatina de capacidades que en muchas ocasiones acaba con la vida autónoma de la persona. En este contexto, las Tecnologías de la Información y Comunicación (TIC) aplicadas al entorno doméstico pueden jugar un papel importante, permitiendo que las personas ancianas vivan más tiempo, de forma independiente en su propio hogar, presentando, por tanto, una alternativa a la hospitalización o institucionalización de las mismas. Este trabajo da un paso más en este sentido, presentando el diseño y desarrollo de un Ambiente Inteligente en la cocina, que ayuda a las personas ancianas y/o con discapacidad a desempeñar sus actividades de la vida diaria de una forma más fácil y sencilla. Esta tesis realiza sus principales aportaciones en dos campos: El metodológico y el tecnológico. Por un lado se presenta una metodología sistemática para extraer necesidades de colectivos específicos a fin de mejorar la información disponible por el equipo de diseño del producto, servicio o sistema. Esta metodología se basa en el estudio de la interacción Hombre-Máquina en base a los paradigmas y modelos existentes y el modelado y descripción de las capacidades del usuario en la misma utilizado el lenguaje estandarizado propuesto en la Clasificación Internacional del Funcionamiento, de la Discapacidad y de la Salud (CIF). Adicionalmente, se plantea el problema de la evaluación tecnológica, diseñando la metodología de evaluación de la tecnología con la finalidad de conocer su accesibilidad, funcionalidad y usabilidad del sistema desarrollado y aplicándola a 61 usuarios y 31 profesionales de la gerontología. Desde un punto de vista técnico, se afronta el diseño de un ambiente asistido inteligente (Ambient Assisted Living, AAL) en la cocina, planteando y definiendo la arquitectura del sistema. Esta arquitectura, basada en OSGi (Open Services Gateway initiative), oferta un sistema modular, con altas capacidades de interoperabilidad y escalabilidad. Además, se diseña e implementa una red de sensores distribuida en el entorno con el fin de obtener la mayor información posible del contexto, presentando distintos algoritmos para obtener información de alto nivel: detección de caídas o localización. Todos los dispositivos presentes en el entorno han sido modelados utilizando la taxonomía propuesta en OSGi4AmI, extendiendo la misma a los electrodomésticos más habituales de la cocina. Finalmente, se presenta el diseño e implementación de la inteligencia del sistema, que en función de la información procedente del contexto y de las capacidades del usuario da soporte a las principales actividades de la vida diaria (AVD) en la cocina

    Machine Learning-based Detection of Compensatory Balance Responses and Environmental Fall Risks Using Wearable Sensors

    Get PDF
    Falls are the leading cause of fatal and non-fatal injuries among seniors worldwide, with serious and costly consequences. Compensatory balance responses (CBRs) are reactions to recover stability following a loss of balance, potentially resulting in a fall if sufficient recovery mechanisms are not activated. While performance of CBRs are demonstrated risk factors for falls in seniors, the frequency, type, and underlying cause of these incidents occurring in everyday life have not been well investigated. This study was spawned from the lack of research on development of fall risk assessment methods that can be used for continuous and long-term mobility monitoring of the geri- atric population, during activities of daily living, and in their dwellings. Wearable sensor systems (WSS) offer a promising approach for continuous real-time detection of gait and balance behavior to assess the risk of falling during activities of daily living. To detect CBRs, we record movement signals (e.g. acceleration) and activity patterns of four muscles involving in maintaining balance using wearable inertial measurement units (IMUs) and surface electromyography (sEMG) sensors. To develop more robust detection methods, we investigate machine learning approaches (e.g., support vector machines, neural networks) and successfully detect lateral CBRs, during normal gait with accuracies of 92.4% and 98.1% using sEMG and IMU signals, respectively. Moreover, to detect environmental fall-related hazards that are associated with CBRs, and affect balance control behavior of seniors, we employ an egocentric mobile vision system mounted on participants chest. Two algorithms (e.g. Gabor Barcodes and Convolutional Neural Networks) are developed. Our vision-based method detects 17 different classes of environmental risk factors (e.g., stairs, ramps, curbs) with 88.5% accuracy. To the best of the authors knowledge, this study is the first to develop and evaluate an automated vision-based method for fall hazard detection

    Neuromorphic audio processing through real-time embedded spiking neural networks.

    Get PDF
    In this work novel speech recognition and audio processing systems based on a spiking artificial cochlea and neural networks are proposed and implemented. First, the biological behavior of the animal’s auditory system is analyzed and studied, along with the classical mechanisms of audio signal processing for sound classification, including Deep Learning techniques. Based on these studies, novel audio processing and automatic audio signal recognition systems are proposed, using a bio-inspired auditory sensor as input. A desktop software tool called NAVIS (Neuromorphic Auditory VIsualizer) for post-processing the information obtained from spiking cochleae was implemented, allowing to analyze these data for further research. Next, using a 4-chip SpiNNaker hardware platform and Spiking Neural Networks, a system is proposed for classifying different time-independent audio signals, making use of a Neuromorphic Auditory Sensor and frequency studies obtained with NAVIS. To prove the robustness and analyze the limitations of the system, the input audios were disturbed, simulating extreme noisy environments. Deep Learning mechanisms, particularly Convolutional Neural Networks, are trained and used to differentiate between healthy persons and pathological patients by detecting murmurs from heart recordings after integrating the spike information from the signals using a neuromorphic auditory sensor. Finally, a similar approach is used to train Spiking Convolutional Neural Networks for speech recognition tasks. A novel SCNN architecture for timedependent signals classification is proposed, using a buffered layer that adapts the information from a real-time input domain to a static domain. The system was deployed on a 48-chip SpiNNaker platform. Finally, the performance and efficiency of these systems were evaluated, obtaining conclusions and proposing improvements for future works.Premio Extraordinario de Doctorado U
    corecore