6,066 research outputs found

    Supervisor Localization of Discrete-Event Systems based on State Tree Structures

    Full text link
    Recently we developed supervisor localization, a top-down approach to distributed control of discrete-event systems in the Ramadge-Wonham supervisory control framework. Its essence is the decomposition of monolithic (global) control action into local control strategies for the individual agents. In this paper, we establish a counterpart supervisor localization theory in the framework of State Tree Structures, known to be efficient for control design of very large systems. In the new framework, we introduce the new concepts of local state tracker, local control function, and state-based local-global control equivalence. As before, we prove that the collective localized control behavior is identical to the monolithic optimal (i.e. maximally permissive) and nonblocking controlled behavior. In addition, we propose a new and more efficient localization algorithm which exploits BDD computation. Finally we demonstrate our localization approach on a model for a complex semiconductor manufacturing system

    Internet enabled modelling of extended manufacturing enterprises using the process based techniques

    Get PDF
    The paper presents the preliminary results of an ongoing research project on Internet enabled process-based modelling of extended manufacturing enterprises. It is proposed to apply the Open System Architecture for CIM (CIMOSA) modelling framework alongside with object-oriented Petri Net models of enterprise processes and object-oriented techniques for extended enterprises modelling. The main features of the proposed approach are described and some components discussed. Elementary examples of object-oriented Petri Net implementation and real-time visualisation are presented

    Multi-level agent-based modeling - A literature survey

    Full text link
    During last decade, multi-level agent-based modeling has received significant and dramatically increasing interest. In this article we present a comprehensive and structured review of literature on the subject. We present the main theoretical contributions and application domains of this concept, with an emphasis on social, flow, biological and biomedical models.Comment: v2. Ref 102 added. v3-4 Many refs and text added v5-6 bibliographic statistics updated. v7 Change of the name of the paper to reflect what it became, many refs and text added, bibliographic statistics update

    Intelligent Product Agents for Multi-Agent Control of Manufacturing Systems

    Full text link
    The current manufacturing paradigm is shifting toward more flexible manufacturing systems that produce highly personalized products, adapt to unexpected disturbances in the system, and readily integrate new manufacturing system technology. However, to achieve this type of flexibility, new system-level control strategies must be developed, tested, and integrated to coordinate the components on the shop floor. One strategy that has been previously proposed to coordinate the resources and parts in a manufacturing system is multi-agent control. The manufacturing multi-agent control strategy consists of agents that interface with the various components on the shop floor and continuously interact with each other to drive the behavior of the manufacturing system. Two of the most important decision-making agents for this type of control strategy are product agents and resource agents. A product agent represents a single product and a resource agent represents a single resource on the plant floor. The objective of a product agent is to make decisions for an individual product and request operations from the resource agents based on manufacturer and customer specifications. A resource agent is the high-level controller for a resource on the shop floor (e.g., machines, material-handling robots, etc.). A resource agent communicates with other product and resource agents in the system, fulfills product agent requests, and interfaces with the associated resource on the plant floor. While both product agents and resource agents are important to ensure effective performance of the manufacturing system, the work presented in this dissertation improves the intelligence and capabilities of product agents by providing a standardized product agent architecture, models to capture the dynamics and constraints of the manufacturing environment, and methods to make improved decisions in a dynamic system. New methods to explore the manufacturing system and cooperate with other agents in the system are provided. The proposed architecture, models, and methods are tested in a simulated manufacturing environment and in several manufacturing testbeds with physical components. The results of these experiments showcase the improved flexibility and adaptability of this approach. In these experiments, the model-based product agent effectively makes decisions to meet its production requirements, while responding to unexpected disturbances in the system, such as machine failures or new customer orders. The model-based product agent proposed in this dissertation pushes the fields of manufacturing and system-level control closer to realizing the goals of increased personalized production and improved manufacturing system flexibility.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162893/1/ikoval_1.pd

    A Knowledge Management System Embedded in the New Semantic Technologies

    Get PDF
    • …
    corecore