685 research outputs found

    Advanced Endoscopic Navigation:Surgical Big Data,Methodology,and Applications

    Get PDF
    随着科学技术的飞速发展,健康与环境问题日益成为人类面临的最重大问题之一。信息科学、计算机技术、电子工程与生物医学工程等学科的综合应用交叉前沿课题,研究现代工程技术方法,探索肿瘤癌症等疾病早期诊断、治疗和康复手段。本论文综述了计算机辅助微创外科手术导航、多模态医疗大数据、方法论及其临床应用:从引入微创外科手术导航概念出发,介绍了医疗大数据的术前与术中多模态医学成像方法、阐述了先进微创外科手术导航的核心流程包括计算解剖模型、术中实时导航方案、三维可视化方法及交互式软件技术,归纳了各类微创外科手术方法的临床应用。同时,重点讨论了全球各种手术导航技术在临床应用中的优缺点,分析了目前手术导航领域内的最新技术方法。在此基础上,提出了微创外科手术方法正向数字化、个性化、精准化、诊疗一体化、机器人化以及高度智能化的发展趋势。【Abstract】Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.X.L. acknowledges funding from the Fundamental Research Funds for the Central Universities. T.M.P. acknowledges funding from the Canadian Foundation for Innovation, the Canadian Institutes for Health Research, the National Sciences and Engineering Research Council of Canada, and a grant from Intuitive Surgical Inc

    Image-Fusion for Biopsy, Intervention, and Surgical Navigation in Urology

    Get PDF

    Advances in navigation and intraoperative imaging for intraoperative electron radiotherapy

    Get PDF
    Mención Internacional en el título de doctorEsta tesis se enmarca dentro del campo de la radioterapia y trata específicamente sobre la radioterapia intraoperatoria (RIO) con electrones. Esta técnica combina la resección quirúrgica de un tumor y la radiación terapéutica directamente aplicada sobre el lecho tumoral post-resección o sobre el tumor no resecado. El haz de electrones de alta energía es colimado y conducido por un aplicador específico acoplado a un acelerador lineal. La planificación de la RIO con electrones es compleja debido a las modificaciones geométricas y anatómicas producidas por la retracción de estructuras y la eliminación de tejidos cancerosos durante la cirugía. Actualmente, no se dispone del escenario real en este tipo de tratamientos (por ejemplo, la posición/orientación del aplicador respecto a la anatomía del paciente o las irregularidades en la superficie irradiada), sólo de una estimación grosso modo del tratamiento real administrado al paciente. Las imágenes intraoperatorias del escenario real durante el tratamiento (concretamente imágenes de tomografía axial computarizada [TAC]) serían útiles no sólo para la planificación intraoperatoria, sino también para registrar y evaluar el tratamiento administrado al paciente. Esta información es esencial en estudios prospectivos. En esta tesis se evaluó en primer lugar la viabilidad de un sistema de seguimiento óptico de varias cámaras para obtener la posición/orientación del aplicador en los escenarios de RIO con electrones. Los resultados mostraron un error de posición del aplicador inferior a 2 mm (error medio del centro del bisel) y un error de orientación menor de 2º (error medio del eje del bisel y del eje longitudinal del aplicador). Estos valores están dentro del rango propuesto por el Grupo de Trabajo 147 (encargo del Comité de Terapia y del Subcomité para la Mejora de la Garantía de Calidad y Resultados de la Asociación Americana de Físicos en Medicina [AAPM] para estudiar en radioterapia externa la exactitud de la localización con métodos no radiográficos, como los sistemas infrarrojos). Una limitación importante de la solución propuesta es que el aplicador se superpone a la imagen preoperatoria del paciente. Una imagen intraoperatoria proporcionaría información anatómica actualizada y permitiría estimar la distribución tridimensional de la dosis. El segundo estudio específico de esta tesis evaluó la viabilidad de adquirir con un TAC simulador imágenes TAC intraoperatorias de escenarios reales de RIO con electrones. No hubo complicaciones en la fase de transporte del paciente utilizando la camilla y su acople para el transporte, o con la adquisición de imágenes TAC intraoperatorias en la sala del TAC simulador. Los estudios intraoperatorios adquiridos se utilizaron para evaluar la mejora obtenida en la estimación de la distribución de dosis en comparación con la obtenida a partir de imágenes TAC preoperatorias, identificando el factor dominante en esas estimaciones (la región de aire y las irregularidades en la superficie, no las heterogeneidades de los tejidos). Por último, el tercer estudio específico se centró en la evaluación de varias tecnologías TAC de kilovoltaje, aparte del TAC simulador, para adquirir imágenes intraoperatorias con las que estimar la distribución de la dosis en RIO con electrones. Estos dispositivos serían necesarios en el caso de disponer de aceleradores lineales portátiles en el quirófano ya que no se aprobaría mover al paciente a la sala del TAC simulador. Los resultados con un maniquí abdominal mostraron que un TAC portátil (BodyTom) e incluso un acelerador lineal con un TAC de haz de cónico (TrueBeam) serían adecuados para este propósito.This thesis is framed within the field of radiotherapy, specifically intraoperative electron radiotherapy (IOERT). This technique combines surgical resection of a tumour and therapeutic radiation directly applied to a post-resection tumour bed or to an unresected tumour. The high-energy electron beam is collimated and conducted by a specific applicator docked to a linear accelerator (LINAC). Dosimetry planning for IOERT is challenging owing to the geometrical and anatomical modifications produced by the retraction of structures and removal of cancerous tissues during the surgery. No data of the actual IOERT 3D scenario is available (for example, the applicator pose in relation to the patient’s anatomy or the irregularities in the irradiated surface) and consequently only a rough approximation of the actual IOERT treatment administered to the patient can be estimated. Intraoperative computed tomography (CT) images of the actual scenario during the treatment would be useful not only for intraoperative planning but also for registering and evaluating the treatment administered to the patient. This information is essential for prospective trials. In this thesis, the feasibility of using a multi-camera optical tracking system to obtain the applicator pose in IOERT scenarios was firstly assessed. Results showed that the accuracy of the applicator pose was below 2 mm in position (mean error of the bevel centre) and 2º in orientation (mean error of the bevel axis and the longitudinal axis), which are within the acceptable range proposed in the recommendation of Task Group 147 (commissioned by the Therapy Committee and the Quality Assurance and Outcomes Improvement Subcommittee of the American Association of Physicists in Medicine [AAPM] to study the localization accuracy with non-radiographic methods such as infrared systems in external beam radiation therapy). An important limitation of this solution is that the actual pose of applicator is superimposed on a patient’s preoperative image. An intraoperative image would provide updated anatomical information and would allow estimating the 3D dose distribution. The second specific study of this thesis evaluated the feasibility of acquiring intraoperative CT images with a CT simulator in real IOERT scenarios. There were no complications in the whole procedure related to the transport step using the subtable and its stretcher or the acquisition of intraoperative CT images in the CT simulator room. The acquired intraoperative studies were used to evaluate the improvement achieved in the dose distribution estimation when compared to that obtained from preoperative CT images, identifying the dominant factor in those estimations (air gap and the surface irregularities, not tissue heterogeneities). Finally, the last specific study focused on assessing several kilovoltage (kV) CT technologies other than CT simulators to acquire intraoperative images for estimating IOERT dose distribution. That would be necessary when a mobile electron LINAC was available in the operating room as transferring the patient to the CT simulator room could not be approved. Our results with an abdominal phantom revealed that a portable CT (BodyTom) and even a LINAC with on-board kV cone-beam CT (TrueBeam) would be suitable for this purpose.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Joaquín López Herráiz.- Secretario: María Arrate Muñoz Barrutia.- Vocal: Óscar Acosta Tamay

    Sub-pixel Registration In Computational Imaging And Applications To Enhancement Of Maxillofacial Ct Data

    Get PDF
    In computational imaging, data acquired by sampling the same scene or object at different times or from different orientations result in images in different coordinate systems. Registration is a crucial step in order to be able to compare, integrate and fuse the data obtained from different measurements. Tomography is the method of imaging a single plane or slice of an object. A Computed Tomography (CT) scan, also known as a CAT scan (Computed Axial Tomography scan), is a Helical Tomography, which traditionally produces a 2D image of the structures in a thin section of the body. It uses X-ray, which is ionizing radiation. Although the actual dose is typically low, repeated scans should be limited. In dentistry, implant dentistry in specific, there is a need for 3D visualization of internal anatomy. The internal visualization is mainly based on CT scanning technologies. The most important technological advancement which dramatically enhanced the clinician\u27s ability to diagnose, treat, and plan dental implants has been the CT scan. Advanced 3D modeling and visualization techniques permit highly refined and accurate assessment of the CT scan data. However, in addition to imperfections of the instrument and the imaging process, it is not uncommon to encounter other unwanted artifacts in the form of bright regions, flares and erroneous pixels due to dental bridges, metal braces, etc. Currently, removing and cleaning up the data from acquisition backscattering imperfections and unwanted artifacts is performed manually, which is as good as the experience level of the technician. On the other hand the process is error prone, since the editing process needs to be performed image by image. We address some of these issues by proposing novel registration methods and using stonecast models of patient\u27s dental imprint as reference ground truth data. Stone-cast models were originally used by dentists to make complete or partial dentures. The CT scan of such stone-cast models can be used to automatically guide the cleaning of patients\u27 CT scans from defects or unwanted artifacts, and also as an automatic segmentation system for the outliers of the CT scan data without use of stone-cast models. Segmented data is subsequently used to clean the data from artifacts using a new proposed 3D inpainting approach

    Engineering precision surgery: Design and implementation of surgical guidance technologies

    Get PDF
    In the quest for precision surgery, this thesis introduces several novel detection and navigation modalities for the localization of cancer-related tissues in the operating room. The engineering efforts have focused on image-guided surgery modalities that use the complementary tracer signatures of nuclear and fluorescence radiation. The first part of the thesis covers the use of “GPS-like” navigation concepts to navigate fluorescence cameras during surgery, based on SPECT images of the patient. The second part of the thesis introduces several new imaging modalities such as a hybrid 3D freehand Fluorescence and freehand SPECT imaging and navigation device. Furthermore, to improve the detection of radioactive tracer-emissions during robot-assisted laparoscopic surgery, a tethered DROP-IN gamma probe is introduced. The clinical indications that are used to evaluate the new technologies were all focused on sentinel lymph node procedures in urology (i.e. prostate and penile cancer). Nevertheless, all presented techniques are of such a nature, that they can be applied to different surgical indications, including sentinel lymph node and tumor-receptor-targeted procedures, localization the primary tumor and metastatic spread. This will hopefully contribute towards more precise, less invasive and more effective surgical procedures in the field of oncology. Crystal Photonics GmbH Eurorad S.A. Intuitive Surgical Inc. KARL STORZ Endoscopie Nederland B.V. MILabs B.V. PI Medical Diagnostic Equipment B.V. SurgicEye GmbH Verb Surgical Inc.LUMC / Geneeskund

    Developing multi-modal imaging agents for stem cell tracking

    Get PDF
    Clinical trials using stem cells as a regenerative therapy or a delivery vehicle for anti-cancer agents have been increasing but the outcomes are highly variable. In vivo imaging of stem cell delivery to target organs will help improve their therapeutic efficacy. However, a single imaging modality cannot provide the complete answer. The work in this thesis aims to develop a multi-modal imaging approach to overcome the limitations of each modality. To understand the distribution pattern of transplanted stem cells in vivo, luciferase expressing adipocyte derived mesenchymal stem cells (ADSCs) were labelled with novel bimodal (nuclear/magnetic resonance imaging) nanoparticles and the following hypotheses were tested; 1) that the distribution pattern of transplanted ADSCs would be different between venous and arterial routes, 2) that the arterial route would provide a more efficient way of delivering ADSC to tumours. In addition, ultrasound-guided renal artery injection was developed to improve stem cell delivery to kidney and the efficiency of this injection was assessed using photoacoustic and bioluminescence imaging. Moreover, the applicability of gold nanoparticles (GNP) as cell tracking agents was explored using multi-modal imaging. Results demonstrated the advantages of multi-modal imaging in assessing different cell distribution patterns after two systemic injections and confirmed that the arterial route was more efficient in delivering ADSCs to tumours. The assessment of cell localisation and viability in the kidney suggests that the level of cell engraftment improved after ultrasound-guided renal artery injection. Multi-modal imaging results indicated that GNPs are a promising cell tracking agent for computed tomography but further studies are required to define their specific applications. In conclusion, this work has demonstrated the successful application of multi-modal imaging for stem cell tracking in different organs. The findings from this thesis proved that combining the strengths of each modality can provide greater insight into cell migration and distribution
    corecore