4,896 research outputs found

    Improving the Representation and Conversion of Mathematical Formulae by Considering their Textual Context

    Full text link
    Mathematical formulae represent complex semantic information in a concise form. Especially in Science, Technology, Engineering, and Mathematics, mathematical formulae are crucial to communicate information, e.g., in scientific papers, and to perform computations using computer algebra systems. Enabling computers to access the information encoded in mathematical formulae requires machine-readable formats that can represent both the presentation and content, i.e., the semantics, of formulae. Exchanging such information between systems additionally requires conversion methods for mathematical representation formats. We analyze how the semantic enrichment of formulae improves the format conversion process and show that considering the textual context of formulae reduces the error rate of such conversions. Our main contributions are: (1) providing an openly available benchmark dataset for the mathematical format conversion task consisting of a newly created test collection, an extensive, manually curated gold standard and task-specific evaluation metrics; (2) performing a quantitative evaluation of state-of-the-art tools for mathematical format conversions; (3) presenting a new approach that considers the textual context of formulae to reduce the error rate for mathematical format conversions. Our benchmark dataset facilitates future research on mathematical format conversions as well as research on many problems in mathematical information retrieval. Because we annotated and linked all components of formulae, e.g., identifiers, operators and other entities, to Wikidata entries, the gold standard can, for instance, be used to train methods for formula concept discovery and recognition. Such methods can then be applied to improve mathematical information retrieval systems, e.g., for semantic formula search, recommendation of mathematical content, or detection of mathematical plagiarism.Comment: 10 pages, 4 figure

    Weaving aspects into web service orchestrations

    Get PDF
    Web Service orchestration engines need to be more open to enable the addition of new behaviours into service-based applications. In this paper, we illus- trate how, in a BPEL engine with aspect-weaving ca- pabilities, a process-driven application based on the Google Web Service can be dynamically adapted with new behaviours and hot-fixed to meet unforeseen post- deployment requirements. Business processes (the ap- plication skeletons) can be enriched with additional fea- tures such as debugging, execution monitoring, or an application-specific GUI. Dynamic aspects are also used on the processes themselves to tackle the problem of hot-fixes to long running processes. In this manner, composing a Web Service ’on-the-fly’ means weaving its choreography in- terface into the business process

    TuLiPA : a syntax-semantics parsing environment for mildly context-sensitive formalisms

    Get PDF
    In this paper we present a parsing architecture that allows processing of different mildly context-sensitive formalisms, in particular Tree-Adjoining Grammar (TAG), Multi-Component Tree-Adjoining Grammar with Tree Tuples (TT-MCTAG) and simple Range Concatenation Grammar (RCG). Furthermore, for tree-based grammars, the parser computes not only syntactic analyses but also the corresponding semantic representations

    Spud 1.0: generalising and automating the user interfaces of scientific computer models

    No full text
    The interfaces by which users specify the scenarios to be simulated by scientific computer models are frequently primitive, under-documented and ad-hoc text files which make using the model in question difficult and error-prone and significantly increase the development cost of the model. In this paper, we present a model-independent system, Spud, which formalises the specification of model input formats in terms of formal grammars. This is combined with an automated graphical user interface which guides users to create valid model inputs based on the grammar provided, and a generic options reading module, libspud, which minimises the development cost of adding model options. <br><br> Together, this provides a user friendly, well documented, self validating user interface which is applicable to a wide range of scientific models and which minimises the developer input required to maintain and extend the model interface

    KInNeSS: A Modular Framework for Computational Neuroscience

    Full text link
    Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.Center for Excellence for Learning Education, Science, and Technology (SBE-0354378); Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure

    CLPGUI: a generic graphical user interface for constraint logic programming over finite domains

    Full text link
    CLPGUI is a graphical user interface for visualizing and interacting with constraint logic programs over finite domains. In CLPGUI, the user can control the execution of a CLP program through several views of constraints, of finite domain variables and of the search tree. CLPGUI is intended to be used both for teaching purposes, and for debugging and improving complex programs of realworld scale. It is based on a client-server architecture for connecting the CLP process to a Java-based GUI process. Communication by message passing provides an open architecture which facilitates the reuse of graphical components and the porting to different constraint programming systems. Arbitrary constraints and goals can be posted incrementally from the GUI. We propose several dynamic 2D and 3D visualizations of the search tree and of the evolution of finite domain variables. We argue that the 3D representation of search trees proposed in this paper provides the most appropriate visualization of large search trees. We describe the current implementation of the annotations and of the interactive execution model in GNU-Prolog, and report some evaluation results.Comment: 16 pages; Alexandre Tessier, editor; WLPE 2002, http://xxx.lanl.gov/abs/cs.SE/020705
    corecore