427 research outputs found

    Authorization Framework for the Internet-of-Things

    Get PDF
    This paper describes a framework that allows fine-grained and flexible access control to connected devices with very limited processing power and memory. We propose a set of security and performance requirements for this setting and derive an authorization framework distributing processing costs between constrained devices and less constrained back-end servers while keeping message exchanges with the constrained devices at a minimum. As a proof of concept we present performance results from a prototype implementing the device part of the framework

    XSACd—Cross-domain resource sharing & access control for smart environments

    Get PDF
    Computing devices permeate working and living environments, affecting all aspects of modern everyday lives; a trend which is expected to intensify in the coming years. In the residential setting, the enhanced features and services provided by said computing devices constitute what is typically referred to as a “smart home”. However, the direct interaction smart devices often have with the physical world, along with the processing, storage and communication of data pertaining to users’ lives, i.e. private sensitive in nature, bring security concerns into the limelight. The resource-constraints of the platforms being integrated into a smart home environment, and their heterogeneity in hardware, network and overlaying technologies, only exacerbate the above issues. This paper presents XSACd, a cross-domain resource sharing & access control framework for smart environments, combining the well-studied fine-grained access control provided by the eXtensible Access Control Markup Language (XACML) with the benefits of Service Oriented Architectures, through the use of the Devices Profile for Web Services (DPWS). Based on standardized technologies, it enables seamless interactions and fine-grained policy-based management of heterogeneous smart devices, including support for communication between distributed networks, via the associated MQ Telemetry Transport protocol (MQTT)–based proxies. The framework is implemented in full, and its performance is evaluated on a test bed featuring relatively resource-constrained smart platforms and embedded devices, verifying the feasibility of the proposed approac

    A synchronous multimedia annotation system for secure collaboratories

    Get PDF
    In this paper, we describe the Vannotea system - an application designed to enable collaborating groups to discuss and annotate collections of high quality images, video, audio or 3D objects. The system has been designed specifically to capture and share scholarly discourse and annotations about multimedia research data by teams of trusted colleagues within a research or academic environment. As such, it provides: authenticated access to a web browser search interface for discovering and retrieving media objects; a media replay window that can incorporate a variety of embedded plug-ins to render different scientific media formats; an annotation authoring, editing, searching and browsing tool; and session logging and replay capabilities. Annotations are personal remarks, interpretations, questions or references that can be attached to whole files, segments or regions. Vannotea enables annotations to be attached either synchronously (using jabber message passing and audio/video conferencing) or asynchronously and stand-alone. The annotations are stored on an Annotea server, extended for multimedia content. Their access, retrieval and re-use is controlled via Shibboleth identity management and XACML access policies
    • …
    corecore