738 research outputs found

    Issues in the Design of a Pilot Concept-Based Query Interface for the Neuroinformatics Information Framework

    Get PDF
    This paper describes a pilot query interface that has been constructed to help us explore a "concept-based" approach for searching the Neuroscience Information Framework (NIF). The query interface is concept-based in the sense that the search terms submitted through the interface are selected from a standardized vocabulary of terms (concepts) that are structured in the form of an ontology. The NIF contains three primary resources: the NIF Resource Registry, the NIF Document Archive, and the NIF Database Mediator. These NIF resources are very different in their nature and therefore pose challenges when designing a single interface from which searches can be automatically launched against all three resources simultaneously. The paper first discusses briefly several background issues involving the use of standardized biomedical vocabularies in biomedical information retrieval, and then presents a detailed example that illustrates how the pilot concept-based query interface operates. The paper concludes by discussing certain lessons learned in the development of the current version of the interface

    Creating Intelligent Linking for Information Threading in Knowledge Networks

    Full text link
    Informledge System (ILS) is a knowledge network with autonomous nodes and intelligent links that integrate and structure the pieces of knowledge. In this paper, we aim to put forward the link dynamics involved in intelligent processing of information in ILS. There has been advancement in knowledge management field which involve managing information in databases from a single domain. ILS works with information from multiple domains stored in distributed way in the autonomous nodes termed as Knowledge Network Node (KNN). Along with the concept under consideration, KNNs store the processed information linking concepts and processors leading to the appropriate processing of information.Comment: 5 Pages, 6 Figures, 2 Tables, India Conference (INDICON), 201

    Introduction to semantic e-Science in biomedicine

    Get PDF
    The Semantic Web technologies provide enhanced capabilities that allow data and the meaning of the data to be shared and reused across application, enterprise, and community boundaries, better enabling integrative research and more effective knowledge discovery. This special issue is intended to give an introduction of the state-of-the-art of Semantic Web technologies and describe how such technologies would be used to build the e-Science infrastructure for biomedical communities. Six papers have been selected and included, featuring different approaches and experiences in a variety of biomedical domains

    Integration of prostate cancer clinical data using an ontology

    Get PDF
    AbstractIt is increasingly important for investigators to efficiently and effectively access, interpret, and analyze the data from diverse biological, literature, and annotation sources in a unified way. The heterogeneity of biomedical data and the lack of metadata are the primary sources of the difficulty for integration, presenting major challenges to effective search and retrieval of the information. As a proof of concept, the Prostate Cancer Ontology (PCO) is created for the development of the Prostate Cancer Information System (PCIS). PCIS is applied to demonstrate how the ontology is utilized to solve the semantic heterogeneity problem from the integration of two prostate cancer related database systems at the Fox Chase Cancer Center. As the results of the integration process, the semantic query language SPARQL is applied to perform the integrated queries across the two database systems based on PCO

    The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience

    Get PDF
    With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience’s Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov, http://neurogateway.org, and other sites as they come on line

    Ontologies for Neuroscience: What are they and What are they Good for?

    Get PDF
    Current information technology practices in neuroscience make it difficult to understand the organization of the brain across spatial scales. Subcellular junctional connectivity, cytoarchitectural local connectivity, and long-range topographical connectivity are just a few of the relevant data domains that must be synthesized in order to make sense of the brain. However, due to the heterogeneity of the data produced within these domains, the landscape of multiscale neuroscience data is fragmented. A standard framework for neuroscience data is needed to bridge existing digital data resources and to help in the conceptual unification of the multiple disciplines of neuroscience. Using our efforts in building ontologies for neuroscience as an example, we examine the benefits and limits of ontologies as a solution for this data integration problem. We provide several examples of their application to problems of image annotation, content-based retrieval of structural data, and integration of data across scales and researchers

    Biological data integration using Semantic Web technologies

    Get PDF
    International audienceCurrent research in biology heavily depends on the availability and efficient use of information. In order to build new knowledge, various sources of biological data must often be combined. Semantic Web technologies, which provide a common framework allowing data to be shared and reused between applications, can be applied to the management of disseminated biological data. However, due to some specificities of biological data, the application of these technologies to life science constitutes a real challenge. Through a use case of biological data integration, we show in this paper that current Semantic Web technologies start to become mature and can be applied for the development of large applications. However, in order to get the best from these technologies, improvements are needed both at the level of tool performance and knowledge modeling

    Integration of Neuroimaging and Microarray Datasets through Mapping and Model-Theoretic Semantic Decomposition of Unstructured Phenotypes

    Get PDF
    An approach towards heterogeneous neuroscience dataset integration is proposed that uses Natural Language Processing (NLP) and a knowledge-based phenotype organizer system (PhenOS) to link ontology-anchored terms to underlying data from each database, and then maps these terms based on a computable model of disease (SNOMED CT®). The approach was implemented using sample datasets from fMRIDC, GEO, The Whole Brain Atlas and Neuronames, and allowed for complex queries such as “List all disorders with a finding site of brain region X, and then find the semantically related references in all participating databases based on the ontological model of the disease or its anatomical and morphological attributes”. Precision of the NLP-derived coding of the unstructured phenotypes in each dataset was 88% (n = 50), and precision of the semantic mapping between these terms across datasets was 98% (n = 100). To our knowledge, this is the first example of the use of both semantic decomposition of disease relationships and hierarchical information found in ontologies to integrate heterogeneous phenotypes across clinical and molecular datasets

    Francisella tularensis novicida proteomic and transcriptomic data integration and annotation based on semantic web technologies

    Get PDF
    This paper summarises the lessons and experiences gained from a case study of the application of semantic web technologies to the integration of data from the bacterial species Francisella tularensis novicida (Fn). Fn data sources are disparate and heterogeneous, as multiple laboratories across the world, using multiple technologies, perform experiments to understand the mechanism of virulence. It is hard to integrate these data sources in a flexible manner that allows new experimental data to be added and compared when required
    • …
    corecore