597 research outputs found

    Using wearable inertial sensors to compare different versions of the dual task paradigm during walking

    Get PDF
    The dual task paradigm (DTP), where performance of a walking task co-occurs with a cognitive task to assess performance decrement, has been controversially mooted as a more suitable task to test safety from falls in outdoor and urban environments than simple walking in a hospital corridor. There are a variety of different cognitive tasks that have been used in the DTP, and we wanted to assess the use of a secondary task that requires mental tracking (the alternate letter alphabet task) against a more automatic working memory task (counting backward by ones). In this study we validated the x-io x-IMU wearable inertial sensors, used them to record healthy walking, and then used dynamic time warping to assess the elements of the gait cycle. In the timed 25 foot walk (T25FW) the alternate letter alphabet task lengthened the stride time significantly compared to ordinary walking, while counting backward did not. We conclude that adding a mental tracking task in a DTP will elicit performance decrement in healthy volunteers

    Detection of Human Vigilance State During Locomotion Using Wearable FNIRS

    Get PDF
    Human vigilance is a cognitive function that requires sustained attention toward change in the environment. Human vigilance detection is a widely investigated topic which can be accomplished by various approaches. Most studies have focused on stationary vigilance detection due to the high effect of interference such as motion artifacts which are prominent in common movements such as walking. Functional Near-Infrared Spectroscopy is a preferred modality in vigilance detection due to the safe nature, the low cost and ease of implementation. fNIRS is not immune to motion artifact interference, and therefore human vigilance detection performance would be severely degraded when studied during locomotion. Properly treating and removing walking-induced motion artifacts from the contaminated signals is crucial to ensure accurate vigilance detection. This study compared the vigilance level detection during both stationary and walking states and confirmed that the performance of vigilance level detection during walking is significantly deteriorated (with a

    The use of wearable inertial measurement units to assess gait and balance outcomes related to fall risk among older adults

    Get PDF
    Due to the prevalence and associated health, social and economic costs of falls among older adults, this thesis originally aimed to identify a more robust and objective way of assessing fall risk factors with the use of wearable inertial measurement units (IMU). However, due to unforeseen circumstances, the direction of the thesis had to be changed. Therefore, the thesis aimed to investigate whether gait and balance outcomes related to fall risk, when measured with wearable IMUs are sensitive to conditions which may replicate clinical and habitual environments. In Study one, a systematic scoping review was conducted to identify characteristic differences between fallers and non-fallers with the use of IMUs. The lower trunk was the most common anatomical location, whilst walking a predetermined distance indoors was the most common test used with IMUs to distinguish between fallers and non-fallers. In Study two, seventeen older and seventeen younger adults performed multiple walking and standing tasks in a laboratory. Older adults had a lower root mean square of the IMU acceleration signal, harmonic ratio and greater step time asymmetry compared to younger adults. The use of a cognitive dual task caused gait to be slower and less symmetrical among older and younger adults. Trunk displacement to quantify trunk sway during quiet standing was greater among older adults and increased as standing conditions became more difficult. Older adults exhibited distinct differences in gait when walking indoors and outdoors. The results of Study two suggested that IMUs may identify differences between older and younger adults regarding walking speed and time to completion of clinical tests, even when a stopwatch could not. In Study three, twenty older and twenty younger adults had IMUs attached to different anatomical locations during waking hours. There were differences in all gait variables when walking supervised in the laboratory and unsupervised in habitual indoor environments for both older and younger adults. There were also large differences in gait variables when walking indoors and outdoors. These results suggest the need for future studies in continuous, outdoor and unsupervised free-living conditions, with regards to fall risk assessments. This thesis demonstrates that gait and balance outcomes related to fall risk, when measured using wearable IMUs, are sensitive to conditions resembling habitual and clinical environments among both older and younger adults. This could prove valuable for the enhancement of future fall risk research

    Sensor Approach for Brain Pathophysiology of Freezing of Gait in Parkinson\u27s Disease Patients

    Get PDF
    Parkinson\u27s Disease (PD) affects over 1% of the population over 60 years of age and is expected to reach 1 million in the USA by the year 2020, growing by 60 thousand each year. It is well understood that PD is characterized by dopaminergic loss, leading to decreased executive function causing motor symptoms such as tremors, bradykinesia, dyskinesia, and freezing of gait (FoG) as well as non-motor symptoms such as loss of smell, depression, and sleep abnormalities. A PD diagnosis is difficult to make since there is no worldwide approved test and difficult to manage since its manifestations are widely heterogeneous among subjects. Thus, understanding the patient subsets and the neural biomarkers that set them apart will lead to improved personalized care. To explore the physiological alternations caused by PD on neurological pathways and their effect on motor control, it is necessary to detect the neural activity and its dissociation with healthy physiological function. To this effect, this study presents a custom ultra-wearable sensor solution, consisting of electroencephalograph, electromyograph, ground reaction force, and symptom measurement sensors for the exploration of neural biomarkers during active gait paradigms. Additionally, this study employed novel de-noising techniques for dealing with the motion artifacts associated with active gait EEG recordings and compared time-frequency features between a group of PD with FoG and a group of age-matched controls and found significant differences between several EEG frequency bands during start and end of normal walking (with a p\u3c0.05)

    Towards a Practical Pedestrian Distraction Detection Framework using Wearables

    Full text link
    Pedestrian safety continues to be a significant concern in urban communities and pedestrian distraction is emerging as one of the main causes of grave and fatal accidents involving pedestrians. The advent of sophisticated mobile and wearable devices, equipped with high-precision on-board sensors capable of measuring fine-grained user movements and context, provides a tremendous opportunity for designing effective pedestrian safety systems and applications. Accurate and efficient recognition of pedestrian distractions in real-time given the memory, computation and communication limitations of these devices, however, remains the key technical challenge in the design of such systems. Earlier research efforts in pedestrian distraction detection using data available from mobile and wearable devices have primarily focused only on achieving high detection accuracy, resulting in designs that are either resource intensive and unsuitable for implementation on mainstream mobile devices, or computationally slow and not useful for real-time pedestrian safety applications, or require specialized hardware and less likely to be adopted by most users. In the quest for a pedestrian safety system that achieves a favorable balance between computational efficiency, detection accuracy, and energy consumption, this paper makes the following main contributions: (i) design of a novel complex activity recognition framework which employs motion data available from users' mobile and wearable devices and a lightweight frequency matching approach to accurately and efficiently recognize complex distraction related activities, and (ii) a comprehensive comparative evaluation of the proposed framework with well-known complex activity recognition techniques in the literature with the help of data collected from human subject pedestrians and prototype implementations on commercially-available mobile and wearable devices

    Smartphone-based human activity recognition

    Get PDF
    Cotutela Universitat Politècnica de Catalunya i Università degli Studi di GenovaHuman Activity Recognition (HAR) is a multidisciplinary research field that aims to gather data regarding people's behavior and their interaction with the environment in order to deliver valuable context-aware information. It has nowadays contributed to develop human-centered areas of study such as Ambient Intelligence and Ambient Assisted Living, which concentrate on the improvement of people's Quality of Life. The first stage to accomplish HAR requires to make observations from ambient or wearable sensor technologies. However, in the second case, the search for pervasive, unobtrusive, low-powered, and low-cost devices for achieving this challenging task still has not been fully addressed. In this thesis, we explore the use of smartphones as an alternative approach for performing the identification of physical activities. These self-contained devices, which are widely available in the market, are provided with embedded sensors, powerful computing capabilities and wireless communication technologies that make them highly suitable for this application. This work presents a series of contributions regarding the development of HAR systems with smartphones. In the first place we propose a fully operational system that recognizes in real-time six physical activities while also takes into account the effects of postural transitions that may occur between them. For achieving this, we cover some research topics from signal processing and feature selection of inertial data, to Machine Learning approaches for classification. We employ two sensors (the accelerometer and the gyroscope) for collecting inertial data. Their raw signals are the input of the system and are conditioned through filtering in order to reduce noise and allow the extraction of informative activity features. We also emphasize on the study of Support Vector Machines (SVMs), which are one of the state-of-the-art Machine Learning techniques for classification, and reformulate various of the standard multiclass linear and non-linear methods to find the best trade off between recognition performance, computational costs and energy requirements, which are essential aspects in battery-operated devices such as smartphones. In particular, we propose two multiclass SVMs for activity classification:one linear algorithm which allows to control over dimensionality reduction and system accuracy; and also a non-linear hardware-friendly algorithm that only uses fixed-point arithmetic in the prediction phase and enables a model complexity reduction while maintaining the system performance. The efficiency of the proposed system is verified through extensive experimentation over a HAR dataset which we have generated and made publicly available. It is composed of inertial data collected from a group of 30 participants which performed a set of common daily activities while carrying a smartphone as a wearable device. The results achieved in this research show that it is possible to perform HAR in real-time with a precision near 97\% with smartphones. In this way, we can employ the proposed methodology in several higher-level applications that require HAR such as ambulatory monitoring of the disabled and the elderly during periods above five days without the need of a battery recharge. Moreover, the proposed algorithms can be adapted to other commercial wearable devices recently introduced in the market (e.g. smartwatches, phablets, and glasses). This will open up new opportunities for developing practical and innovative HAR applications.El Reconocimiento de Actividades Humanas (RAH) es un campo de investigación multidisciplinario que busca recopilar información sobre el comportamiento de las personas y su interacción con el entorno con el propósito de ofrecer información contextual de alta significancia sobre las acciones que ellas realizan. Recientemente, el RAH ha contribuido en el desarrollo de áreas de estudio enfocadas a la mejora de la calidad de vida del hombre tales como: la inteligència ambiental (Ambient Intelligence) y la vida cotidiana asistida por el entorno para personas dependientes (Ambient Assisted Living). El primer paso para conseguir el RAH consiste en realizar observaciones mediante el uso de sensores fijos localizados en el ambiente, o bien portátiles incorporados de forma vestible en el cuerpo humano. Sin embargo, para el segundo caso, aún se dificulta encontrar dispositivos poco invasivos, de bajo consumo energético, que permitan ser llevados a cualquier lugar, y de bajo costo. En esta tesis, nosotros exploramos el uso de teléfonos móviles inteligentes (Smartphones) como una alternativa para el RAH. Estos dispositivos, de uso cotidiano y fácilmente asequibles en el mercado, están dotados de sensores embebidos, potentes capacidades de cómputo y diversas tecnologías de comunicación inalámbrica que los hacen apropiados para esta aplicación. Nuestro trabajo presenta una serie de contribuciones en relación al desarrollo de sistemas para el RAH con Smartphones. En primera instancia proponemos un sistema que permite la detección de seis actividades físicas en tiempo real y que, además, tiene en cuenta las transiciones posturales que puedan ocurrir entre ellas. Con este fin, hemos contribuido en distintos ámbitos que van desde el procesamiento de señales y la selección de características, hasta algoritmos de Aprendizaje Automático (AA). Nosotros utilizamos dos sensores inerciales (el acelerómetro y el giroscopio) para la captura de las señales de movimiento de los usuarios. Estas han de ser procesadas a través de técnicas de filtrado para la reducción de ruido, segmentación y obtención de características relevantes en la detección de actividad. También hacemos énfasis en el estudio de Máquinas de soporte vectorial (MSV) que son uno de los algoritmos de AA más usados en la actualidad. Para ello reformulamos varios de sus métodos estándar (lineales y no lineales) con el propósito de encontrar la mejor combinación de variables que garanticen un buen desempeño del sistema en cuanto a precisión, coste computacional y requerimientos de energía, los cuales son aspectos esenciales en dispositivos portátiles con suministro de energía mediante baterías. En concreto, proponemos dos MSV multiclase para la clasificación de actividad: un algoritmo lineal que permite el balance entre la reducción de la dimensionalidad y la precisión del sistema; y asimismo presentamos un algoritmo no lineal conveniente para dispositivos con limitaciones de hardware que solo utiliza aritmética de punto fijo en la fase de predicción y que permite reducir la complejidad del modelo de aprendizaje mientras mantiene el rendimiento del sistema. La eficacia del sistema propuesto es verificada a través de una experimentación extensiva sobre la base de datos RAH que hemos generado y hecho pública en la red. Esta contiene la información inercial obtenida de un grupo de 30 participantes que realizaron una serie de actividades de la vida cotidiana en un ambiente controlado mientras tenían sujeto a su cintura un smartphone que capturaba su movimiento. Los resultados obtenidos en esta investigación demuestran que es posible realizar el RAH en tiempo real con una precisión cercana al 97%. De esta manera, podemos emplear la metodología propuesta en aplicaciones de alto nivel que requieran el RAH tales como monitorizaciones ambulatorias para personas dependientes (ej. ancianos o discapacitados) durante periodos mayores a cinco días sin la necesidad de recarga de baterías.Postprint (published version

    Wearable and BAN Sensors for Physical Rehabilitation and eHealth Architectures

    Get PDF
    The demographic shift of the population towards an increase in the number of elderly citizens, together with the sedentary lifestyle we are adopting, is reflected in the increasingly debilitated physical health of the population. The resulting physical impairments require rehabilitation therapies which may be assisted by the use of wearable sensors or body area network sensors (BANs). The use of novel technology for medical therapies can also contribute to reducing the costs in healthcare systems and decrease patient overflow in medical centers. Sensors are the primary enablers of any wearable medical device, with a central role in eHealth architectures. The accuracy of the acquired data depends on the sensors; hence, when considering wearable and BAN sensing integration, they must be proven to be accurate and reliable solutions. This book is a collection of works focusing on the current state-of-the-art of BANs and wearable sensing devices for physical rehabilitation of impaired or debilitated citizens. The manuscripts that compose this book report on the advances in the research related to different sensing technologies (optical or electronic) and body area network sensors (BANs), their design and implementation, advanced signal processing techniques, and the application of these technologies in areas such as physical rehabilitation, robotics, medical diagnostics, and therapy

    Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders

    Get PDF
    The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Establishing a Kinetic Assessment of Reactive Strength

    Get PDF
    The reactive strength index (RSI) is the current “gold standard” assessment of reactive strength. Traditional measures of reactive strength, including the RSI, are not strength-based and are founded using untested theoretical assumptions. The purpose of this study was to develop two versions of a kinetic-based paradigm of reactive strength (New and AdjNew) and compare them against the Coefficient of Reactivity (CoR) and the RSI. Twenty one NCAA Division I basketball players and 59 young adults from the general population performed two reactive strength protocols: Progressive drop jumping and repetitive countermovement jumping. For every jump, the CoR, RSI, New, and AdjNew were computed. Measure agreeability was assessed using the Bland-Altman approach and linear regressions. Analyses of variance (ANOVA) assessed the effect of sport participation, age, and sex on the four measures of reactive strength. Lastly, effects of self-reported physical activity levels were assessed using stepwise linear regressions. The strongest association was observed between AdjNew and the RSI (R2= 0.636). All NCAA \u3e young adults). The RSI, New, and AdjNew were sensitive to effects of sex and sport participation in repetitive countermovement jumping (males \u3e females; NCAA \u3e young adults). There are theoretical issues with the computation and implementation of the CoR and RSI. For example, the CoR and RSI are non-strength based measures that attempt to measure a strength construct. Further, the CoR, RSI, and New make the theoretical assumption that no biological variability exists in human movement. The AdjNew paradigm addresses and solves the theoretical issues with the CoR, RSI, and New. Therefore it may be argued that the AdjNew paradigm improves the theoretical validity of reactive strength assessment and is preferred over the RSI. The AdjNew is kinetic based, comprised of only measured component variables, and is not founded in assumptions of theory. This dissertation provides objective theoretical evidence to suggest that the AdjNew paradigm is an improvement over the RSI as a model of reactive strength
    corecore