26,755 research outputs found

    A hybrid algorithm for Bayesian network structure learning with application to multi-label learning

    Get PDF
    We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PC's ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.Comment: arXiv admin note: text overlap with arXiv:1101.5184 by other author

    Bayesian Structure Learning for Markov Random Fields with a Spike and Slab Prior

    Get PDF
    In recent years a number of methods have been developed for automatically learning the (sparse) connectivity structure of Markov Random Fields. These methods are mostly based on L1-regularized optimization which has a number of disadvantages such as the inability to assess model uncertainty and expensive cross-validation to find the optimal regularization parameter. Moreover, the model's predictive performance may degrade dramatically with a suboptimal value of the regularization parameter (which is sometimes desirable to induce sparseness). We propose a fully Bayesian approach based on a "spike and slab" prior (similar to L0 regularization) that does not suffer from these shortcomings. We develop an approximate MCMC method combining Langevin dynamics and reversible jump MCMC to conduct inference in this model. Experiments show that the proposed model learns a good combination of the structure and parameter values without the need for separate hyper-parameter tuning. Moreover, the model's predictive performance is much more robust than L1-based methods with hyper-parameter settings that induce highly sparse model structures.Comment: Accepted in the Conference on Uncertainty in Artificial Intelligence (UAI), 201

    Non-Bayesian Social Learning, Second Version

    Get PDF
    We develop a dynamic model of opinion formation in social networks. Relevant information is spread throughout the network in such a way that no agent has enough data to learn a payoff-relevant parameter. Individuals engage in communication with their neighbors in order to learn from their experiences. However, instead of incorporating the views of their neighbors in a fully Bayesian manner, agents use a simple updating rule which linearly combines their personal experience and the views of their neighbors (even though the neighbors’ views may be quite inaccurate). This non-Bayesian learning rule is motivated by the formidable complexity required to fully implement Bayesian updating in networks. We show that, under mild assumptions, repeated interactions lead agents to successfully aggregate information and to learn the true underlying state of the world. This result holds in spite of the apparent naıvite of agents’ updating rule, the agents’ need for information from sources (i.e., other agents) the existence of which they may not be aware of, the possibility that the most persuasive agents in the network are precisely those least informed and with worst prior views, and the assumption that no agent can tell whether their own views or their neighbors’ views are more accurate.Social networks, learning, information aggregation
    • …
    corecore