429 research outputs found

    HAPTIC VISUALIZATION USING VISUAL TEXTURE INFORMATION

    Get PDF
    Haptic enables users to interact and manipulate virtual objects. Although haptic research has influenced many areas yet the inclusion of computer haptic into computer vision, especially content based image retrieval (CBIR), is still few and limited. The purpose of this research is to design and validate a haptic texture search framework that will allow texture retrieval to be done not just visually but also haptically. Hence, this research is addressing the gap between the computer haptic and CBIR fields. In this research, the focus is on cloth textures. The design of the proposed framework involves haptic texture rendering algorithm and query algorithm. The proposed framework integrates computer haptic and content based image retrieval (CBIR) where haptic texture rendering is performed based on extracted cloth data. For the query purposes, the data are characterized and the texture similarity is calculated. Wavelet decomposition is utilized to extract data information from texture data. In searching process, the data are retrieved based on data distribution. The experiments to validate the framework have shown that haptic texture rendering can be performed by employing techniques that involve either a simple waveform or visual texture information. While rendering process was performed instability forces were generated during the rendering process was due to the limitation of the device. In the query process, accuracy is determined by the number of feature vector elements, data extraction, and similarity measurement algorithm. A user testing to validate the framework shows that users’ perception of haptic feedback differs depending on the different type of rendering algorithm. A simple rendering algorithm, i.e. sine wave, produces a more stable force feedback, yet lacks surface details compared to the visual texture information approach

    Signal and Information Processing Methods for Embedded Robotic Tactile Sensing Systems

    Get PDF
    The human skin has several sensors with different properties and responses that are able to detect stimuli resulting from mechanical stimulations. Pressure sensors are the most important type of receptors for the exploration and manipulation of objects. In the last decades, smart tactile sensing based on different sensing techniques have been developed as their application in robotics and prosthetics is considered of huge interest, mainly driven by the prospect of autonomous and intelligent robots that can interact with the environment. However, regarding object properties estimation on robots, hardness detection is still a major limitation due to the lack of techniques to estimate it. Furthermore, finding processing methods that can interpret the measured information from multiple sensors and extract relevant information is a Challenging task. Moreover, embedding processing methods and machine learning algorithms in robotic applications to extract meaningful information such as object properties from tactile data is an ongoing challenge, which is controlled by the device constraints (power constraint, memory constraints, etc.), the computational complexity of the processing and machine learning algorithms, the application requirements (real-time operations, high prediction performance). In this dissertation, we focus on the design and implementation of pre-processing methods and machine learning algorithms to handle the aforementioned challenges for a tactile sensing system in robotic application. First, we propose a tactile sensing system for robotic application. Then we present efficient preprocessing and feature extraction methods for our tactile sensors. Then we propose a learning strategy to reduce the computational cost of our processing unit in object classification using sensorized Baxter robot. Finally, we present a real-time robotic tactile sensing system for hardness classification on a resource-constrained devices. The first study represents a further assessment of the sensing system that is based on the PVDF sensors and the interface electronics developed in our lab. In particular, first, it presents the development of a skin patch (multilayer structure) that allows us to use the sensors in several applications such as robotic hand/grippers. Second, it shows the characterization of the developed skin patch. Third, it validates the sensing system. Moreover, we designed a filter to remove noise and detect touch. The experimental assessment demonstrated that the developed skin patch and the interface electronics indeed can detect different touch patterns and stimulus waveforms. Moreover, the results of the experiments defined the frequency range of interest and the response of the system to realistic interactions with the sensing system to grasp and release events. In the next study, we presented an easy integration of our tactile sensing system into Baxter gripper. Computationally efficient pre-processing techniques were designed to filter the signal and extract relevant information from multiple sensor signals, in addition to feature extraction methods. These processing methods aim in turn to reduce also the computational complexity of machine learning algorithms utilized for object classification. The proposed system and processing strategy were evaluated on object classification application by integrating our system into the gripper and we collected data by grasping multiple objects. We further proposed a learning strategy to accomplish a trade-off between the generalization accuracy and the computational cost of the whole processing unit. The proposed pre-processing and feature extraction techniques together with the learning strategy have led to models with extremely low complexity and very high generalization accuracy. Moreover, the support vector machine achieved the best trade-off between accuracy and computational cost on tactile data from our sensors. Finally, we presented the development and implementation on the edge of a real–time tactile sensing system for hardness classification on Baxter robot based on machine and deep learning algorithms. We developed and implemented in plain C a set of functions that provide the fundamental layer functionalities of the Machine learning and Deep Learning models (ML and DL), along with the pre–processing methods to extract the features and normalize the data. The models can be deployed to any device that supports C code since it does not rely on any of the existing libraries. Shallow ML/DL algorithms for the deployment on resource–constrained devices are designed. To evaluate our work, we collected data by grasping objects of different hardness and shape. Two classification problems were addressed: 5 levels of hardness classified on the same objects’ shape, and 5 levels of hardness classified on two different objects’ shape. Furthermore, optimization techniques were employed. The models and pre–processing were implemented on a resource constrained device, where we assessed the performance of the system in terms of accuracy, memory footprint, time latency, and energy consumption. We achieved for both classification problems a real-time inference (< 0.08 ms), low power consumption (i.e., 3.35 μJ), extremely small models (i.e., 1576 Byte), and high accuracy (above 98%)

    A real-time virtual sculpting application with a haptic device

    Get PDF
    In this paper, a 3D virtual sculpting application is developed for 3D virtual models with removing or adding materials by using Boolean operations. Virtual sculpting simulation reads 3D virtual models in a variety of file formats such as raw and stl consisting of a triangle poligon mesh and voxelizes its outer surface and interiror volĂĽme to generate its volumetric dataset. We used octree and hashing techniques to reduce the memory requirement needed for volumetric dataset. The surface is locally reconstructed using Marching Cubes algorithm known as the most popular isosurface extraction algorithm after removing or adding material to the 3D virtual model. The user interacts with the model by using a haptic device to give the force-feedback like real-life sculpting.Publisher's Versio

    Enabling Seamless Access to Digital Graphical Contents for Visually Impaired Individuals via Semantic-Aware Processing

    Get PDF
    Vision is one of the main sources through which people obtain information from the world, but unfortunately, visually-impaired people are partially or completely deprived of this type of information. With the help of computer technologies, people with visual impairment can independently access digital textual information by using text-to-speech and text-to-Braille software. However, in general, there still exists a major barrier for people who are blind to access the graphical information independently in real-time without the help of sighted people. In this paper, we propose a novel multi-level and multi-modal approach aiming at addressing this challenging and practical problem, with the key idea being semantic-aware visual-to-tactile conversion through semantic image categorization and segmentation, and semantic-driven image simplification. An end-to-end prototype system was built based on the approach. We present the details of the approach and the system, report sample experimental results with realistic data, and compare our approach with current typical practice

    Multimodal Emotion Recognition Model using Physiological Signals

    Full text link
    As an important field of research in Human-Machine Interactions, emotion recognition based on physiological signals has become research hotspots. Motivated by the outstanding performance of deep learning approaches in recognition tasks, we proposed a Multimodal Emotion Recognition Model that consists of a 3D convolutional neural network model, a 1D convolutional neural network model and a biologically inspired multimodal fusion model which integrates multimodal information on the decision level for emotion recognition. We use this model to classify four emotional regions from the arousal valence plane, i.e., low arousal and low valence (LALV), high arousal and low valence (HALV), low arousal and high valence (LAHV) and high arousal and high valence (HAHV) in the DEAP and AMIGOS dataset. The 3D CNN model and 1D CNN model are used for emotion recognition based on electroencephalogram (EEG) signals and peripheral physiological signals respectively, and get the accuracy of 93.53% and 95.86% with the original EEG signals in these two datasets. Compared with the single-modal recognition, the multimodal fusion model improves the accuracy of emotion recognition by 5% ~ 25%, and the fusion result of EEG signals (decomposed into four frequency bands) and peripheral physiological signals get the accuracy of 95.77%, 97.27% and 91.07%, 99.74% in these two datasets respectively. Integrated EEG signals and peripheral physiological signals, this model could reach the highest accuracy about 99% in both datasets which shows that our proposed method demonstrates certain advantages in solving the emotion recognition tasks.Comment: 10 pages, 10 figures, 6 table

    A comprehensive review of fruit and vegetable classification techniques

    Get PDF
    Recent advancements in computer vision have enabled wide-ranging applications in every field of life. One such application area is fresh produce classification, but the classification of fruit and vegetable has proven to be a complex problem and needs to be further developed. Fruit and vegetable classification presents significant challenges due to interclass similarities and irregular intraclass characteristics. Selection of appropriate data acquisition sensors and feature representation approach is also crucial due to the huge diversity of the field. Fruit and vegetable classification methods have been developed for quality assessment and robotic harvesting but the current state-of-the-art has been developed for limited classes and small datasets. The problem is of a multi-dimensional nature and offers significantly hyperdimensional features, which is one of the major challenges with current machine learning approaches. Substantial research has been conducted for the design and analysis of classifiers for hyperdimensional features which require significant computational power to optimise with such features. In recent years numerous machine learning techniques for example, Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Trees, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) have been exploited with many different feature description methods for fruit and vegetable classification in many real-life applications. This paper presents a critical comparison of different state-of-the-art computer vision methods proposed by researchers for classifying fruit and vegetable

    Human-Machine Interfaces using Distributed Sensing and Stimulation Systems

    Get PDF
    As the technology moves towards more natural human-machine interfaces (e.g. bionic limbs, teleoperation, virtual reality), it is necessary to develop a sensory feedback system in order to foster embodiment and achieve better immersion in the control system. Contemporary feedback interfaces presented in research use few sensors and stimulation units to feedback at most two discrete feedback variables (e.g. grasping force and aperture), whereas the human sense of touch relies on a distributed network of mechanoreceptors providing a wide bandwidth of information. To provide this type of feedback, it is necessary to develop a distributed sensing system that could extract a wide range of information during the interaction between the robot and the environment. In addition, a distributed feedback interface is needed to deliver such information to the user. This thesis proposes the development of a distributed sensing system (e-skin) to acquire tactile sensation, a first integration of distributed sensing system on a robotic hand, the development of a sensory feedback system that compromises the distributed sensing system and a distributed stimulation system, and finally the implementation of deep learning methods for the classification of tactile data. It\u2019s core focus addresses the development and testing of a sensory feedback system, based on the latest distributed sensing and stimulation techniques. To this end, the thesis is comprised of two introductory chapters that describe the state of art in the field, the objectives, and the used methodology and contributions; as well as six studies that tackled the development of human-machine interfaces
    • …
    corecore