69,440 research outputs found

    Localized Dispersive States in Nonlinear Coupled Mode Equations for Light Propagation in Fiber Bragg Gratings.

    Get PDF
    Dispersion effects induce new instabilities and dynamics in the weakly nonlinear description of light propagation in fiber Bragg gratings. A new family of dispersive localized pulses that propagate with the group velocity is numerically found, and its stability is also analyzed. The unavoidable different asymptotic order of transport and dispersion effects plays a crucial role in the determination of these localized states. These results are also interesting from the point of view of general pattern formation since this asymptotic imbalance is a generic situation in any transport-dominated (i.e., nonzero group velocity) spatially extended system

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tec

    Programmed cell death and genetic stability in conifer embryogenesis

    Get PDF
    Somatic embryogenesis, the generation of embryos from somatic cells, is a valuable tool for studying embryology. In addition, somatic embryos can be used for large-scale vegetative propagation, an application of great interest for forestry. A critical event during early embryo differentiation in conifers is the apical basal polarization, which proceeds through the establishment of two embryonic parts: the proliferating embryonal mass and the terminally differentiated suspensor. The development of both parts is strictly coordinated and imbalance causes embryonic defects. The suspensor cells are eliminated by programmed cell death (PCD). In animals, caspase family proteases are the main executioners of PCD. In this work we have used synthetic peptide substrates containing caspase recognition sites and corresponding specific inhibitors to analyse the role of caspase-like activity during early embryo differentiation in Norway spruce (Picea abies L. Karst.). We found that VEIDase is the principal caspase-like activity. This activity is localized specifically in suspensor cells, and its inhibition prevents normal embryo development by blocking the suspensor differentiation. The in vitro VEIDase activity was shown to be highly sensitive to pH, ionic strength, temperature and zinc concentration. In vivo studies with Zinquin, a zinc-specific fluorescent probe, revealed a high accumulation of intracellular free zinc in the embryonal masses and an abrupt decrease in the suspensor. Increased zinc concentration in the culture medium suppresses terminal differentiation and PCD of the suspensor. In accordance, exposure of early embryos to TPEN, a zinc-specific chelator, induces ectopic cell death affecting embryonal masses. This establishes zinc as an important factor affecting cell fate specification during plant embryogenesis. Before somatic embryos can be accepted for clonal propagation it is important to show that the regenerated plants have similar growth to that of seedlings and are genetically uniform. The genetic integrity during zygotic and somatic embryogenesis in Norway spruce and Scots pine (Pinus sylvestris L.) was investigated by comparing the stability of variable nuclear microsatellite loci. The stability varied significantly among families in both species during somatic embryogenesis. Scots pine families showing low genetic stability during establishment of embryogenic cultures had a higher embryogenic potential than those that were genetically more stable. In contrast, embryo development was suppressed in genetically unstable families. The stability of microsatellites was in general higher in zygotic embryos than in somatic embryos. No deviation in growth was observed in somatic embryo plants of Norway spruce carrying mutated microsatellites

    Ultra wideband: applications, technology and future perspectives

    Get PDF
    Ultra Wide Band (UWB) wireless communications offers a radically different approach to wireless communication compared to conventional narrow band systems. Global interest in the technology is huge. This paper reports on the state of the art of UWB wireless technology and highlights key application areas, technological challenges, higher layer protocol issues, spectrum operating zones and future drivers. The majority of the discussion focuses on the state of the art of UWB technology as it is today and in the near future

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Clarification and complement to "Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons"

    Get PDF
    In this note, we clarify the well-posedness of the limit equations to the mean-field NN-neuron models proposed in Baladron et al. and we prove the associated propagation of chaos property. We also complete the modeling issue in Baladron et al. by discussing the well-posedness of the stochastic differential equations which govern the behavior of the ion channels and the amount of available neurotransmitters
    • 

    corecore