36 research outputs found

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Using Unlabeled Data to Discover Bivariate Causality with Deep Restricted Boltzmann Machines

    Get PDF
    International audienceAn important question in microbiology is whether treatment causes changes in gut flora, and whether it also affects metabolism. The reconstruction of causal relations purely from non-temporal observational data is challenging. We address the problem of causal inference in a bivariate case, where the joint distribution of two variables is observed. We consider, in particular, data on discrete domains. The state-of-the-art causal inference methods for continuous data suffer from high computational complexity. Some modern approaches are not suitable for categorical data, and others need to estimate and fix multiple hyper-parameters. In this contribution, we introduce a novel method of causal inference which is based on the widely used assumption that if X causes Y , then P (X) and P (Y |X) are independent. We propose to explore a semi-supervised approach where P (Y |X) and P (X) are estimated from labeled and unlabeled data respectively, whereas the marginal probability is estimated potentially from much more (cheap unlabeled) data than the conditional distribution. We validate the proposed method on the standard cause-effect pairs. We illustrate by experiments on several benchmarks of biological network reconstruction that the proposed approach is very competitive in terms of computational time and accuracy compared to the state-of-the-art methods. Finally, we apply the proposed method to an original medical task where we study whether drugs confound human metagenome

    Using unlabeled data to discover bivariate causality with deep restricted Boltzmann machines

    No full text
    An important question in microbiology is whether treatment causes changes in gut flora, and whether it also affects metabolism. The reconstruction of causal relations purely from non-temporal observational data is challenging. We address the problem of causal inference in a bivariate case, where the joint distribution of two variables is observed. In this contribution, we introduce a novel method of causality discovering which is based on the widely used assumption that if X causes Y, then P(X) and P(Y|X) are independent. We propose to explore a semi-supervised approach where P(Y|X) and P(X) are estimated from labeled and unlabeled data respectively, whereas the marginal probability is estimated potentially from much more unlabeled data than the conditional distribution. We illustrate by experiments on several benchmarks of biological network reconstruction that the proposed approach is very competitive in terms of computational time and accuracy compared to the state-of-the-art methods. Finally, we apply the proposed method to an original medical task where we study whether drugs confound human metagenome

    Active Learning for Reducing Labeling Effort in Text Classification Tasks

    Get PDF
    Labeling data can be an expensive task as it is usually performed manually by domain experts. This is cumbersome for deep learning, as it is dependent on large labeled datasets. Active learning (AL) is a paradigm that aims to reduce labeling effort by only using the data which the used model deems most informative. Little research has been done on AL in a text classification setting and next to none has involved the more recent, state-of-the-art Natural Language Processing (NLP) models. Here, we present an empirical study that compares different uncertainty-based algorithms with BERTbase_{base} as the used classifier. We evaluate the algorithms on two NLP classification datasets: Stanford Sentiment Treebank and KvK-Frontpages. Additionally, we explore heuristics that aim to solve presupposed problems of uncertainty-based AL; namely, that it is unscalable and that it is prone to selecting outliers. Furthermore, we explore the influence of the query-pool size on the performance of AL. Whereas it was found that the proposed heuristics for AL did not improve performance of AL; our results show that using uncertainty-based AL with BERTbase_{base} outperforms random sampling of data. This difference in performance can decrease as the query-pool size gets larger.Comment: Accepted as a conference paper at the joint 33rd Benelux Conference on Artificial Intelligence and the 30th Belgian Dutch Conference on Machine Learning (BNAIC/BENELEARN 2021). This camera-ready version submitted to BNAIC/BENELEARN, adds several improvements including a more thorough discussion of related work plus an extended discussion section. 28 pages including references and appendice

    Information Bottleneck

    Get PDF
    The celebrated information bottleneck (IB) principle of Tishby et al. has recently enjoyed renewed attention due to its application in the area of deep learning. This collection investigates the IB principle in this new context. The individual chapters in this collection: • provide novel insights into the functional properties of the IB; • discuss the IB principle (and its derivates) as an objective for training multi-layer machine learning structures such as neural networks and decision trees; and • offer a new perspective on neural network learning via the lens of the IB framework. Our collection thus contributes to a better understanding of the IB principle specifically for deep learning and, more generally, of information–theoretic cost functions in machine learning. This paves the way toward explainable artificial intelligence

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF
    corecore