1,279 research outputs found

    Automatic instantiation of abstract tests on specific configurations for large critical control systems

    Full text link
    Computer-based control systems have grown in size, complexity, distribution and criticality. In this paper a methodology is presented to perform an abstract testing of such large control systems in an efficient way: an abstract test is specified directly from system functional requirements and has to be instantiated in more test runs to cover a specific configuration, comprising any number of control entities (sensors, actuators and logic processes). Such a process is usually performed by hand for each installation of the control system, requiring a considerable time effort and being an error prone verification activity. To automate a safe passage from abstract tests, related to the so called generic software application, to any specific installation, an algorithm is provided, starting from a reference architecture and a state-based behavioural model of the control software. The presented approach has been applied to a railway interlocking system, demonstrating its feasibility and effectiveness in several years of testing experience

    ENHANCEMENT OF INFORMATION MANAGEMENT CAPABILITIES IN MDO FRAMEWORK

    Get PDF
    Multidisciplinary Design Optimization (MDO) frameworks have been developed to facilitate the integration of disciplinary analysis codes and optimization techniques. Recent advances in MDO frameworks have addressed issues related to data exchange, distributed computing, process integration and trade study. However, managing, storing and sharing MDO problem information have not yet been fully addressed. In this research a software configuration is proposed. The configuration is built upon a structured repository, common file system and software applications. The configuration is integrated into a commercially available MDO framework to manage, store and share MDO problem information. A common file system proposed in this research provides a structure to store MDO components and enable sharing of components over the network. The ModelCenter framework is selected for the integration of the repository based on the evaluation of the MDO frameworks against a set of extended information management requirements. The repository is a relational database which provides an information model to store information related to MDO problems. A Java interface is utilized to provide access to the structured repository and the common file system in the ModelCenter framework. Java applications are developed to demonstrate the benefits offered by the proposed repository and the common file system. The proposed features and the Java applications are tested for the functionality and performance utilizing IEEE software testing standards

    Automated Test for NASA CFS

    Get PDF
    The core Flight System (cFS) is a flight software (FSW) product line developed by the Flight Software Systems Branch (FSSB) at NASA's Goddard Space Flight Center (GSFC). The cFS uses compile-time configuration parameters to implement variable requirements to enable portability across embedded computing platforms and to implement different end-user functional needs. The verification and validation of these requirements is proving to be a significant challenge. This paper describes the challenges facing the cFS and the results of a pilot effort to apply EXB Solution's testing approach to the cFS applications

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    Automatic instantiation of abstract tests to specific configurations for large critical control systems

    Get PDF
    Computer-based control systems have grown in size, complexity, distribution and criticality. In this paper a methodology is presented to perform an ‘abstract testing’ of such large control systems in an efficient way: an abstract test is specified directly from system functional requirements and has to be instantiated in more test runs to cover a specific configuration, comprising any number of control entities (sensors, actuators and logic processes). Such a process is usually performed by hand for each installation of the control system, requiring a considerable time effort and being an error-prone verification activity. To automate a safe passage from abstract tests, related to the so-called generic software application, to any specific installation, an algorithm is provided, starting from a reference architecture and a statebased behavioural model of the control software. The presented approach has been applied to a railway interlocking system, demonstrating its feasibility and effectiveness in several years of testing experience

    Automatic Generation of Acceptance Test Cases from Use Case Specifications: an NLP-based Approach

    Get PDF
    Acceptance testing is a validation activity performed to ensure the conformance of software systems with respect to their functional requirements. In safety critical systems, it plays a crucial role since it is enforced by software standards, which mandate that each requirement be validated by such testing in a clearly traceable manner. Test engineers need to identify all the representative test execution scenarios from requirements, determine the runtime conditions that trigger these scenarios, and finally provide the input data that satisfy these conditions. Given that requirements specifications are typically large and often provided in natural language (e.g., use case specifications), the generation of acceptance test cases tends to be expensive and error-prone. In this paper, we present Use Case Modeling for System-level, Acceptance Tests Generation (UMTG), an approach that supports the generation of executable, system-level, acceptance test cases from requirements specifications in natural language, with the goal of reducing the manual effort required to generate test cases and ensuring requirements coverage. More specifically, UMTG automates the generation of acceptance test cases based on use case specifications and a domain model for the system under test, which are commonly produced in many development environments. Unlike existing approaches, it does not impose strong restrictions on the expressiveness of use case specifications. We rely on recent advances in natural language processing to automatically identify test scenarios and to generate formal constraints that capture conditions triggering the execution of the scenarios, thus enabling the generation of test data. In two industrial case studies, UMTG automatically and correctly translated 95% of the use case specification steps into formal constraints required for test data generation; furthermore, it generated test cases that exercise not only all the test scenarios manually implemented by experts, but also some critical scenarios not previously considered

    Generation of feasible deployment configuration alternatives for Data Distribution Service based systems

    Get PDF
    Data distribution service (DDS) has been defined by the OMG to provide a standard data-centric publish-subscribe programming model and specification for distributed systems. DDS has been applied for the development of high performance distributed systems such as in the defense, finance, automotive, and simulation domains. To support the analysis and design of a DDS-based distributed system, the OMG has proposed the DDS UML Profile. A DDS-based system usually consists of multiple participant applications each of which has different responsibilities in the system. These participants can be allocated in different ways to the available resources, which leads to different configuration alternatives. Usually, each configuration alternative will perform differently with respect to the execution and communication cost of the overall system. In general, the deployment configuration is selected manually based on expert knowledge. This approach is suitable for small to medium scale applications but for larger applications this is not tractable. In this paper, we provide a systematic approach for deriving feasible deployment alternatives based on the application design and the available physical resources. The application design includes the design for DDS topics, publishers and subscribers. For supporting the application design, we propose a DDS UML profile. Based on the application design and the physical resources, the feasible deployment alternatives can be algorithmically derived and automatically generated using the developed tools. We illustrate the approach for deriving feasible deployment alternatives of smart city parking system
    corecore