22,925 research outputs found

    Modeling and analysis of real-time software systems using UML

    Get PDF
    Real-Time Systems (RTS) should not only function correctly but should also satisfy time constraints. RTS include embedded systems, which are used nowadays in a variety of applications. These are, for instance, house appliances, automotive, aeronautic/aerospace, and health monitoring systems, to mention just a few. The design of such systems is complex and challenging. In order to cope with the complexity of RTS, there is shift in their development to follow a model-driven approach, such as the Model Driven Architecture (MDA), which relies on using models of high level of abstraction. The Unified Modeling Language (UML) is the Object Management Group (OMG) standard modeling language to support MDA. UML is appropriate for software systems because it allows for a multi-view modeling approach through its multitude of diagrams covering the structure, the behavior and the deployment architecture. Moreover, UML is also used in the domain of real-time software systems. This is achieved through its profiles, including, the OMG standard profile for Schedulability, Performance and Time (UML/SPT) or the upcoming standard UML Profile for Modeling and Analysis of Real-Time and Embedded Systems (MARTE). However, UML modeling faces some challenging issues such as model consistency. This issue becomes worse in the context of real-time software systems because additional aspects should be taken into consideration, including time, concurrency and schedulability. In this thesis, we address several issues related to modeling and validation of RTS with UML. We focus in particular on the consistency of UML/SPT models. We adopt an incremental approach to check the consistency of these models by distinguishing the syntactic and semantic levels. The latter is further decomposed into behavioral, concurrency-related and time consistency. Our contributions in this thesis are fourfold. First, we leverage the extensibility mechanisms of UML to propose an extension to UML/SPT. This extension enables the modeling of multicast communications, which is required for the description of the behavior of certain real-time protocols. Second, we propose a formalization of the concurrency modeling capability in UML/SPT using timed automata. This formal semantics allows for applying well-established model checking techniques to check concurrency related consistency in UML/SPT models. Third, we propose an MDA-compliant approach to enable schedulability analysis of UML/SPT models. We present a proof of concept for this approach through a prototype implementation using the Atlas Transformation Language (ATL) and XML-based technologies. Finally, we use the schedulability analysis applied to UML/SPT models in order to check the time consistency of a system design modeled by means of a set of state machines with respect to time constraints modeled using a set of sequence diagrams annotated with UML/SPT time stereotypes. Keywords : Real-time systems, Model-driven Architecture, UML, UML/SPT, Model transformation, ATL, XML, XSLT, Consistency, Concurrency, Model Checking, Schedulability Analysis

    Extending UML-RT for Control System Modelling

    Get PDF
    There is a growing interest in adopting object technologies for the development of real-time control systems. Several commercial tools, currently available, provide object-oriented modeling and design support for real-time control systems. While these products provide many useful facilities, such as visualization tools and automatic code generation, they are all weak in addressing the central characteristic of real-time control systems design, i.e., providing support for a designer to reason about timeliness properties. We believe an approach that integrates the advancements in both object modeling and design methods and real-time scheduling theory is the key to successful use of object technology for real-time software. Surprisingly several past approaches to integrate the two either restrict the object models, or do not allow sophisticated schedulability analysis techniques. This study shows how schedulability analysis can be integrated with UML for Real-Time (UML-RT) to deal with timing properties in real time control systems. More specifically, we develop the schedulability and feasibility analysis modeling for the external messages that may suffer release jitter due to being dispatched by a tick driven scheduler in real-time control system and we also develop the scheduliablity modeling for sporadic activities, where messages arrive sporadically then execute periodically for some bounded time. This method can be used to cope with timing constraints in realistic and complex real-time control systems. Using this method, a designer can quickly evaluate the impact of various implementation decisions on schedulability. In conjunction with automatic code-generation, we believe that this will greatly streamline the design and development of real-time control systems software

    Modeling industrial embedded systems with UML

    Get PDF
    The main purpose of this paper is to present how the Unified Modeling Language (UML) can be used for modeling industrial embedded systems. By using a car radios production line as a running example, the paper demonstrates the modeling process that can be followed during the analysis phase of complex control applications. In order to guarantee the continuity mapping of the models, the authors propose some guidelines to transform the use case diagrams into a single object diagram, which is one of the main diagrams for the next development phases.Fundação para a Ciência e a Tecnologia - PRAXIS/P/EEI/10155/1998 - Reconfiguable Embedded Systems : Development Methodologies for Real-Time Application

    A UML-based approach for modeling industrial control applications

    Get PDF
    The main purpose of the poster is to present how the Unified Modeling Language (UML) can be used for diagnosing and optimizing real industrial production systems. By using a car radios production line as a case study, the poster shows the modeling process that can be followed during the analysis phase of complex control applications. In order to guarantee the continuity mapping of the models, the authors propose some guidelines to transform the use cases diagrams into a single object diagram, which is the main diagram for the next phases of the development.This work has been partially funded by the Portuguese Science & Technology Foundation project PRAXIS/P/EEI/10155/1998, Recon gurable Embedded Systems: Development Methodologies for Real-Time Application

    UML 2.0 interactions with OCL/RT constraints

    Get PDF
    The use of formal methods at early stages of software development contributes to the reliability and robustness of the system to be constructed. Int his context, real-time system development benefits from the construction of behavioral models in order to verify the correct satisfaction of time constraints. The Unified Modeling Language (UML) is a software specification language widely used by the industry and the academia. Nevertheless, its version 2.0 lacks a formal semantics for the development of provably-correct models. In addition, its constraint specification language, Object Constraint Language (OCL), has limitations for its use in behavioral models of real-time systems. This work concerns the inter-component behavioral specification of real-time systems. Such behavior is described using the UML 2.0 Interactions language extended for the inclusion of time constraints using the OCL for Real Time (OCL/RT) language. The main problem addressed in this work is the definition of a formal semantics for the fusion of both languages. The semantics allows recognizing valid and invalid behaviors of a system with time constraints. Intended for formal verification, an analysis of the properties derived from the semantics is also done. In particular, the notions of refinement of interactions and refinement of constraints are explored. Finally, the proposal is compared with related works and its practical application is studied in order to analyze its benefits and weaknesses. This work contributes to the formalization of concepts widely used in practice and, inconsequence, to its inclusion in modeling and formal reasoning tools. More-over, the expressivity of the UML 2.0 Interactions language is augmented in order to support complex real-time constraints, not expressable until this moment

    An Integrated Framework for Multiprocessor, Multimoded Real-Time Applications

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-30598-6_2In this paper we propose an approach for building real-time systems under a combination of requirements: specification and handling of operating modes and mode changes; implementation on top of a multiprocessor platform; integration of both aspects within a common framework; and connection with schedulability analysis procedures. The proposed approach uses finite state machines to describe operating modes and transitions, and a framework of real-time utilities that implements the required behaviour in Ada 2012. Automatic code generation plays an important role: the system is derived from the functional and timing specification, and implemented according to the abstractions provided by the framework. Response time analysis enables assessing the schedulability of the different operating modes and the transitions between modes.This work was partially supported by the Vicerrectorado de Investigación of the UPV (PAID-06-10-2397), Ministerio de Ciencia e Innovación (TIN2011-28567-C03- 03) and European Union (FP7-ICT-287702)Sáez Barona, S.; Real Sáez, JV.; Crespo, A. (2012). An Integrated Framework for Multiprocessor, Multimoded Real-Time Applications. En Reliable Software Technologies – Ada-Europe 2012. Springer. 18-34. https://doi.org/10.1007/978-3-642-30598-6_21834Wellings, A.J., Burns, A.: A Framework for Real-Time Utilities for Ada 2005. Ada Letters XXVII(2) (August 2007)Real, J., Crespo, A.: Incorporating Operating Modes to an Ada Real-Time Framework. Ada Letters 30(1) (April 2010)Sáez, S., Terrasa, S., Crespo, A.: A Real-Time Framework for Multiprocessor Platforms Using Ada 2012. In: Romanovsky, A., Vardanega, T. (eds.) Ada-Europe 2011. LNCS, vol. 6652, pp. 46–60. Springer, Heidelberg (2011)Joseph, M., Pandya, P.: Finding response times in a real-time system. British Computer Society Computer Journal 29(5), 390–395 (1986)Audsley, N., Burns, A., Richardson, M., Tindell, K., Wellings, A.J.: Applying new scheduling theory to static priority pre-emptive scheduling. Software Engineering Journal 8(5), 284–292 (1993)Real, J., Crespo, A.: Mode Change Protocols for Real-Time Systems: A Survey and a new Proposal. Real-Time Systems 26(2), 161–197 (2004)Harel, D.: Statecharts: A visual formalism for complex systems. The Science of Computer Programming 8(3), 231–274 (1987)Object Management Group: Unified Modeling Language (OMG UML) V2.4 (August 2011), http://www.omg.org/spec/UML/2.4.1Sáez, S., Terrasa, S., Lorente, V., Crespo, A.: Implementing Reactive Systems with UML State Machines and Ada 2005. In: Kordon, F., Kermarrec, Y. (eds.) Ada-Europe 2009. LNCS, vol. 5570, pp. 149–163. Springer, Heidelberg (2009)Burns, A., Wellings, A.J.: Dispatching Domains for Multiprocessor Platforms and their Representation in Ada. In: Real, J., Vardanega, T. (eds.) Ada-Europe 2010. LNCS, vol. 6106, pp. 41–53. Springer, Heidelberg (2010)Barnett, J.: State Chart XML (SCXML): State Machine Notation for Control Abstraction (May 2008), http://www.w3.org/TR/scxml

    TURTLE-P: a UML profile for the formal validation of critical and distributed systems

    Get PDF
    The timed UML and RT-LOTOS environment, or TURTLE for short, extends UML class and activity diagrams with composition and temporal operators. TURTLE is a real-time UML profile with a formal semantics expressed in RT-LOTOS. Further, it is supported by a formal validation toolkit. This paper introduces TURTLE-P, an extended profile no longer restricted to the abstract modeling of distributed systems. Indeed, TURTLE-P addresses the concrete descriptions of communication architectures, including quality of service parameters (delay, jitter, etc.). This new profile enables co-design of hardware and software components with extended UML component and deployment diagrams. Properties of these diagrams can be evaluated and/or validated thanks to the formal semantics given in RT-LOTOS. The application of TURTLE-P is illustrated with a telecommunication satellite system

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Verifying service continuity in a satellite reconfiguration procedure: application to a satellite

    Get PDF
    The paper discusses the use of the TURTLE UML profile to model and verify service continuity during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular. TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators. Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL, and discusses its application to a payload software application in charge of an embedded packet switch. The paper demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded software
    corecore