17,762 research outputs found

    Practical Application Of Uml Activity Diagrams For The Generation Of Test Cases

    Get PDF
    Software testing and debugging represents around one third of total effort in development projects. Different factors which have influence on poor practices of testing have been identified through specific surveys. Amongst several, one of the most important is the lack of efficient methods to exploit development models for generating test cases. This paper presents a new method for automatically generating a complete set of functional test cases from UML activity diagrams complementing specification of use cases. Test cases are prioritized according to software risk information. Results from experiences with more than 70 software professionals/experts validate benefits of the method. Participants also confirm its interest and effectiveness for testing needs of industry

    Scalable Model-based Robustness Testing: Novel Methodologies and Industrial Application

    Get PDF
    Embedded systems, as for example communication and control systems, are being increasingly used in our daily lives and hence require thorough and systematic testing before their actual use. Many of these systems interact with their environment and, therefore, their functionality is largely dependent on this environment whose behavior can be unpredictable. Robustness testing aims at testing the behavior of a system in the presence of faulty situations in its operating environment (e.g., sensors and actuators). In such situations, the system should gracefully degrade its performance instead of abruptly stopping execution. To systematically perform robustness testing, one option is to resort to Model-Based Robustness Testing (MBRT), which is a systematic, rigorous, and automated way of conducting robustness testing. However, to successfully apply MBRT in industrial contexts, new technologies need to be developed to scale to the complexity of real industrial systems. This thesis presents a solution for MBRT on industrial systems, including scalable robustness modeling and executable test case generation. One important contribution of this thesis is a scalable RobUstness Modeling Methodology (RUMM), which is achieved using Aspect-Oriented Modeling (AOM). It is a complete, automated, and practical methodology that covers all features of state machines and aspect concepts necessary for MBRT. Such methodology, relying on a standard (Unified Modeling Language or UML) and using the target notation as the basis to model the aspects themselves, is expected to make the practical adoption of robustness modeling easier in industrial contexts. The applicability of the methodology is demonstrated using an industrial case study. Results showed that the approach significantly reduced modeling effort (98% on average), improved separation of concerns, and eased model evolution. The approach is further empirically evaluated using two controlled experiments involving human subjects and results showed that the proposed methodology significantly improves the readability of models as compared to modeling using standard UML notations. Another important contribution of this thesis is an efficient approach for solving constraints (written in Objects Constraint Language (OCL)) on the operating environment of a system, which is mandatory for emulating faulty situation in the environment for the purpose of MBRT. A set of novel heuristics is devised for various OCL constructs, which are required for the application of search algorithms. The heuristics have been empirically evaluated on an industrial case study for robustness testing and the results showed to be very promising and significantly better than the existing works in the literature on OCL constraint solvers. A final contribution of the thesis is robustness test case generation from the models developed using RUMM. Test case generation also includes scripts generation for environment emulation, which is mandatory for automated robustness testing again using an industrial case study. In preliminary experiments, the execution of test cases found one critical, robustness fault in a deployed industrial system

    Automated Functional Testing based on the Navigation of Web Applications

    Full text link
    Web applications are becoming more and more complex. Testing such applications is an intricate hard and time-consuming activity. Therefore, testing is often poorly performed or skipped by practitioners. Test automation can help to avoid this situation. Hence, this paper presents a novel approach to perform automated software testing for web applications based on its navigation. On the one hand, web navigation is the process of traversing a web application using a browser. On the other hand, functional requirements are actions that an application must do. Therefore, the evaluation of the correct navigation of web applications results in the assessment of the specified functional requirements. The proposed method to perform the automation is done in four levels: test case generation, test data derivation, test case execution, and test case reporting. This method is driven by three kinds of inputs: i) UML models; ii) Selenium scripts; iii) XML files. We have implemented our approach in an open-source testing framework named Automatic Testing Platform. The validation of this work has been carried out by means of a case study, in which the target is a real invoice management system developed using a model-driven approach.Comment: In Proceedings WWV 2011, arXiv:1108.208

    An automated Model-based Testing Approach in Software Product Lines Using a Variability Language.

    Get PDF
    This paper presents the application of an automated testing approach for Software Product Lines (SPL) driven by its state-machine and variability models. Context: Model-based testing provides a technique for automatic generation of test cases using models. Introduction of a variability model in this technique can achieve testing automation in SPL. Method: We use UML and CVL (Common Variability Language) models as input, and JUnit test cases are derived from these models. This approach has been implemented using the UML2 Eclipse Modeling platform and the CVL-Tool. Validation: A model checking tool prototype has been developed and a case study has been performed. Conclusions: Preliminary experiments have proved that our approach can find structural errors in the SPL under test. In our future work we will introduce Object Constraint Language (OCL) constraints attached to the input UML mode

    A Model-Driven approach for functional test case generation

    Get PDF
    Test phase is one of the most critical phases in software engineering life cycle to assure the final system quality. In this context, functional system test cases verify that the system under test fulfills its functional specification. Thus, these test cases are frequently designed from the different scenarios and alternatives depicted in functional requirements. The objective of this paper is to introduce a systematic process based on the Model-Driven paradigm to automate the generation of functional test cases from functional requirements. For this aim, a set of metamodels and transformations and also a specific language domain to use them is presented. The paper finishes stating learned lessons from the trenches as well as relevant future work and conclusions that draw new research lines in the test cases generation context.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-

    The pros and cons of using SDL for creation of distributed services

    Get PDF
    In a competitive market for the creation of complex distributed services, time to market, development cost, maintenance and flexibility are key issues. Optimizing the development process is very much a matter of optimizing the technologies used during service creation. This paper reports on the experience gained in the Service Creation projects SCREEN and TOSCA on use of the language SDL for efficient service creation

    Testing M2T/T2M Transformations

    Get PDF
    Presentado en: 16th International Conference on Model Driven Engineering Languages and Systems (MODELS 2013). Del 29 de septiembre al 4 de octubre. Miami, EEUU.Testing model-to-model (M2M) transformations is becoming a prominent topic in the current Model-driven Engineering landscape. Current approaches for transformation testing, however, assume having explicit model representations for the input domain and for the output domain of the transformation. This excludes other important transformation kinds, such as model-to-text (M2T) and text-to-model (T2M) transformations, from being properly tested since adequate model representations are missing either for the input domain or for the output domain. The contribution of this paper to overcome this gap is extending Tracts, a M2M transformation testing approach, for M2T/T2M transformation testing. The main mechanism we employ for reusing Tracts is to represent text within a generic metamodel. By this, we transform the M2T/T2M transformation specification problems into equivalent M2M transformation specification problems. We demonstrate the applicability of the approach by two examples and present how the approach is implemented for the Eclipse Modeling Framework (EMF). Finally, we apply the approach to evaluate code generation capabilities of several existing UML tools.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Proyecto TIN2011-2379

    A Modeling Approach based on UML/MARTE for GPU Architecture

    Get PDF
    Nowadays, the High Performance Computing is part of the context of embedded systems. Graphics Processing Units (GPUs) are more and more used in acceleration of the most part of algorithms and applications. Over the past years, not many efforts have been done to describe abstractions of applications in relation to their target architectures. Thus, when developers need to associate applications and GPUs, for example, they find difficulty and prefer using API for these architectures. This paper presents a metamodel extension for MARTE profile and a model for GPU architectures. The main goal is to specify the task and data allocation in the memory hierarchy of these architectures. The results show that this approach will help to generate code for GPUs based on model transformations using Model Driven Engineering (MDE).Comment: Symposium en Architectures nouvelles de machines (SympA'14) (2011
    corecore