6,221 research outputs found

    A Combined Component-Based Approach for the Design of Distributed Software Systems

    Get PDF
    Component-based software development enables the construction of software artefacts by assembling binary units of production, distribution and deployment, the so-called components. Several approaches to component-based development have been proposed recently. Most of these approaches are based on the Unified Modeling Language (UML). UML has been increasingly used in component-based development, despite some shortcomings of this language. This paper presents a methodology for the design of component-based applications that combines a model-based approach with a UML-based approach. This combined approach tackles some of the limitations of UML, allowing a better control of the design proces

    Verifying service continuity in a satellite reconfiguration procedure: application to a satellite

    Get PDF
    The paper discusses the use of the TURTLE UML profile to model and verify service continuity during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular. TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators. Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL, and discusses its application to a payload software application in charge of an embedded packet switch. The paper demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded software

    An Approach to Relate Viewpoints and Modeling Languages

    Get PDF
    The architectural design of distributed enterprise applications from the viewpoints of different stakeholders has been proposed for some time, for example, as part of RM-ODP and IEEE 1471, and seems now-a-days to gain acceptance in practice. However, much work remains to be done on the relationships between different viewpoints. Failing to relate viewpoints may lead to a collection of viewpoint models that is inconsistent, and may therefore lead to an incorrect implementation. This paper defines an approach that helps designers to relate different viewpoints to each other. Thereby, it helps to enforce the consistency of the overall design. The results of this paper are expected to be particularly interesting for Model Driven Architecture (MDA) projects, since the proposed models can be used for the explicit definition of the models and relationships between models in an MDA trajectory

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Automated Mapping of UML Activity Diagrams to Formal Specifications for Supporting Containment Checking

    Full text link
    Business analysts and domain experts are often sketching the behaviors of a software system using high-level models that are technology- and platform-independent. The developers will refine and enrich these high-level models with technical details. As a consequence, the refined models can deviate from the original models over time, especially when the two kinds of models evolve independently. In this context, we focus on behavior models; that is, we aim to ensure that the refined, low-level behavior models conform to the corresponding high-level behavior models. Based on existing formal verification techniques, we propose containment checking as a means to assess whether the system's behaviors described by the low-level models satisfy what has been specified in the high-level counterparts. One of the major obstacles is how to lessen the burden of creating formal specifications of the behavior models as well as consistency constraints, which is a tedious and error-prone task when done manually. Our approach presented in this paper aims at alleviating the aforementioned challenges by considering the behavior models as verification inputs and devising automated mappings of behavior models onto formal properties and descriptions that can be directly used by model checkers. We discuss various challenges in our approach and show the applicability of our approach in illustrative scenarios.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    Model-driven performance evaluation for service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluation of services and service compositions in the context of model-driven service engineering. Temporal databases theory is utilised for the empirical performance evaluation of model-driven developed service systems

    Dependability checking with StoCharts: Is train radio reliable enough for trains?

    Get PDF
    Performance, dependability and quality of service (QoS) are prime aspects of the UML modelling domain. To capture these aspects effectively in the design phase, we have recently proposed STOCHARTS, a conservative extension of UML statechart diagrams. In this paper, we apply the STOCHART formalism to a safety critical design problem. We model a part of the European Train Control System specification, focusing on the risks of wireless communication failures in future high-speed cross-European trains. Stochastic model checking with the model checker PROVER enables us to derive constraints under which the central quality requirements are satisfied by the STOCHART model. The paper illustrates the flexibility and maturity of STOCHARTS to model real problems in safety critical system design
    corecore