9,930 research outputs found

    Using Trusted Execution Environments for Secure Stream Processing of Medical Data

    Full text link
    Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount of data must be processed efficiently and securely, even under strong adversarial models. The recent introduction in the mass-market of consumer-grade processors with Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to implement solutions that overcome less flexible approaches, such as those atop homomorphic encryption. We present a secure streaming processing system built on top of Intel SGX to showcase the viability of this approach with a system specifically fitted for medical data. We design and fully implement a prototype system that we evaluate with several realistic datasets. Our experimental results show that the proposed system achieves modest overhead compared to vanilla Spark while offering additional protection guarantees under powerful attackers and threat models.Comment: 19th International Conference on Distributed Applications and Interoperable System

    SoK: A Systematic Review of TEE Usage for Developing Trusted Applications

    Get PDF
    Trusted Execution Environments (TEEs) are a feature of modern central processing units (CPUs) that aim to provide a high assurance, isolated environment in which to run workloads that demand both confidentiality and integrity. Hardware and software components in the CPU isolate workloads, commonly referred to as Trusted Applications (TAs), from the main operating system (OS). This article aims to analyse the TEE ecosystem, determine its usability, and suggest improvements where necessary to make adoption easier. To better understand TEE usage, we gathered academic and practical examples from a total of 223 references. We summarise the literature and provide a publication timeline, along with insights into the evolution of TEE research and deployment. We categorise TAs into major groups and analyse the tools available to developers. Lastly, we evaluate trusted container projects, test performance, and identify the requirements for migrating applications inside them.Comment: In The 18th International Conference on Availability, Reliability and Security (ARES 2023), August 29 -- September 01, 2023, Benevento, Italy. 15 page

    A Hybrid Approach to Privacy-Preserving Federated Learning

    Full text link
    Federated learning facilitates the collaborative training of models without the sharing of raw data. However, recent attacks demonstrate that simply maintaining data locality during training processes does not provide sufficient privacy guarantees. Rather, we need a federated learning system capable of preventing inference over both the messages exchanged during training and the final trained model while ensuring the resulting model also has acceptable predictive accuracy. Existing federated learning approaches either use secure multiparty computation (SMC) which is vulnerable to inference or differential privacy which can lead to low accuracy given a large number of parties with relatively small amounts of data each. In this paper, we present an alternative approach that utilizes both differential privacy and SMC to balance these trade-offs. Combining differential privacy with secure multiparty computation enables us to reduce the growth of noise injection as the number of parties increases without sacrificing privacy while maintaining a pre-defined rate of trust. Our system is therefore a scalable approach that protects against inference threats and produces models with high accuracy. Additionally, our system can be used to train a variety of machine learning models, which we validate with experimental results on 3 different machine learning algorithms. Our experiments demonstrate that our approach out-performs state of the art solutions
    • …
    corecore