198 research outputs found

    Anaphora resolution for Arabic machine translation :a case study of nafs

    Get PDF
    PhD ThesisIn the age of the internet, email, and social media there is an increasing need for processing online information, for example, to support education and business. This has led to the rapid development of natural language processing technologies such as computational linguistics, information retrieval, and data mining. As a branch of computational linguistics, anaphora resolution has attracted much interest. This is reflected in the large number of papers on the topic published in journals such as Computational Linguistics. Mitkov (2002) and Ji et al. (2005) have argued that the overall quality of anaphora resolution systems remains low, despite practical advances in the area, and that major challenges include dealing with real-world knowledge and accurate parsing. This thesis investigates the following research question: can an algorithm be found for the resolution of the anaphor nafs in Arabic text which is accurate to at least 90%, scales linearly with text size, and requires a minimum of knowledge resources? A resolution algorithm intended to satisfy these criteria is proposed. Testing on a corpus of contemporary Arabic shows that it does indeed satisfy the criteria.Egyptian Government

    LINKING ARABIC SOCIAL MEDIA BASED ON SIMILARITY AND SENTIMENT

    Get PDF

    Statistical Parsing by Machine Learning from a Classical Arabic Treebank

    Get PDF
    Research into statistical parsing for English has enjoyed over a decade of successful results. However, adapting these models to other languages has met with difficulties. Previous comparative work has shown that Modern Arabic is one of the most difficult languages to parse due to rich morphology and free word order. Classical Arabic is the ancient form of Arabic, and is understudied in computational linguistics, relative to its worldwide reach as the language of the Quran. The thesis is based on seven publications that make significant contributions to knowledge relating to annotating and parsing Classical Arabic. Classical Arabic has been studied in depth by grammarians for over a thousand years using a traditional grammar known as i’rāb (Ű„ŰčŰșۧ۩ ). Using this grammar to develop a representation for parsing is challenging, as it describes syntax using a hybrid of phrase-structure and dependency relations. This work aims to advance the state-of-the-art for hybrid parsing by introducing a formal representation for annotation and a resource for machine learning. The main contributions are the first treebank for Classical Arabic and the first statistical dependency-based parser in any language for ellipsis, dropped pronouns and hybrid representations. A central argument of this thesis is that using a hybrid representation closely aligned to traditional grammar leads to improved parsing for Arabic. To test this hypothesis, two approaches are compared. As a reference, a pure dependency parser is adapted using graph transformations, resulting in an 87.47% F1-score. This is compared to an integrated parsing model with an F1-score of 89.03%, demonstrating that joint dependency-constituency parsing is better suited to Classical Arabic. The Quran was chosen for annotation as a large body of work exists providing detailed syntactic analysis. Volunteer crowdsourcing is used for annotation in combination with expert supervision. A practical result of the annotation effort is the corpus website: http://corpus.quran.com, an educational resource with over two million users per year

    An Urdu semantic tagger - lexicons, corpora, methods and tools

    Get PDF
    Extracting and analysing meaning-related information from natural language data has attracted the attention of researchers in various fields, such as Natural Language Processing (NLP), corpus linguistics, data sciences, etc. An important aspect of such automatic information extraction and analysis is the semantic annotation of language data using semantic annotation tool (a.k.a semantic tagger). Generally, different semantic annotation tools have been designed to carry out various levels of semantic annotations, for instance, sentiment analysis, word sense disambiguation, content analysis, semantic role labelling, etc. These semantic annotation tools identify or tag partial core semantic information of language data, moreover, they tend to be applicable only for English and other European languages. A semantic annotation tool that can annotate semantic senses of all lexical units (words) is still desirable for the Urdu language based on USAS (the UCREL Semantic Analysis System) semantic taxonomy, in order to provide comprehensive semantic analysis of Urdu language text. This research work report on the development of an Urdu semantic tagging tool and discuss challenging issues which have been faced in this Ph.D. research work. Since standard NLP pipeline tools are not widely available for Urdu, alongside the Urdu semantic tagger a suite of newly developed tools have been created: sentence tokenizer, word tokenizer and part-of-speech tagger. Results for these proposed tools are as follows: word tokenizer reports F1F_1 of 94.01\%, and accuracy of 97.21\%, sentence tokenizer shows F1_1 of 92.59\%, and accuracy of 93.15\%, whereas, POS tagger shows an accuracy of 95.14\%. The Urdu semantic tagger incorporates semantic resources (lexicon and corpora) as well as semantic field disambiguation methods. In terms of novelty, the NLP pre-processing tools are developed either using rule-based, statistical, or hybrid techniques. Furthermore, all semantic lexicons have been developed using a novel combination of automatic or semi-automatic approaches: mapping, crowdsourcing, statistical machine translation, GIZA++, word embeddings, and named entity. A large multi-target annotated corpus is also constructed using a semi-automatic approach to test accuracy of the Urdu semantic tagger, proposed corpus is also used to train and test supervised multi-target Machine Learning classifiers. The results show that Random k-labEL Disjoint Pruned Sets and Classifier Chain multi-target classifiers outperform all other classifiers on the proposed corpus with a Hamming Loss of 0.06\% and Accuracy of 0.94\%. The best lexical coverage of 88.59\%, 99.63\%, 96.71\% and 89.63\% are obtained on several test corpora. The developed Urdu semantic tagger shows encouraging precision on the proposed test corpus of 79.47\%

    Language Modelling with Pixels

    Full text link
    Language models are defined over a finite set of inputs, which creates a vocabulary bottleneck when we attempt to scale the number of supported languages. Tackling this bottleneck results in a trade-off between what can be represented in the embedding matrix and computational issues in the output layer. This paper introduces PIXEL, the Pixel-based Encoder of Language, which suffers from neither of these issues. PIXEL is a pretrained language model that renders text as images, making it possible to transfer representations across languages based on orthographic similarity or the co-activation of pixels. PIXEL is trained to reconstruct the pixels of masked patches, instead of predicting a distribution over tokens. We pretrain the 86M parameter PIXEL model on the same English data as BERT and evaluate on syntactic and semantic tasks in typologically diverse languages, including various non-Latin scripts. We find that PIXEL substantially outperforms BERT on syntactic and semantic processing tasks on scripts that are not found in the pretraining data, but PIXEL is slightly weaker than BERT when working with Latin scripts. Furthermore, we find that PIXEL is more robust to noisy text inputs than BERT, further confirming the benefits of modelling language with pixels.Comment: work in progres

    Homograph Disambiguation Through Selective Diacritic Restoration

    Full text link
    Lexical ambiguity, a challenging phenomenon in all natural languages, is particularly prevalent for languages with diacritics that tend to be omitted in writing, such as Arabic. Omitting diacritics leads to an increase in the number of homographs: different words with the same spelling. Diacritic restoration could theoretically help disambiguate these words, but in practice, the increase in overall sparsity leads to performance degradation in NLP applications. In this paper, we propose approaches for automatically marking a subset of words for diacritic restoration, which leads to selective homograph disambiguation. Compared to full or no diacritic restoration, these approaches yield selectively-diacritized datasets that balance sparsity and lexical disambiguation. We evaluate the various selection strategies extrinsically on several downstream applications: neural machine translation, part-of-speech tagging, and semantic textual similarity. Our experiments on Arabic show promising results, where our devised strategies on selective diacritization lead to a more balanced and consistent performance in downstream applications.Comment: accepted in WANLP 201

    Mining complex trees for hidden fruit : a graph–based computational solution to detect latent criminal networks : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Technology at Massey University, Albany, New Zealand.

    Get PDF
    The detection of crime is a complex and difficult endeavour. Public and private organisations – focusing on law enforcement, intelligence, and compliance – commonly apply the rational isolated actor approach premised on observability and materiality. This is manifested largely as conducting entity-level risk management sourcing ‘leads’ from reactive covert human intelligence sources and/or proactive sources by applying simple rules-based models. Focusing on discrete observable and material actors simply ignores that criminal activity exists within a complex system deriving its fundamental structural fabric from the complex interactions between actors - with those most unobservable likely to be both criminally proficient and influential. The graph-based computational solution developed to detect latent criminal networks is a response to the inadequacy of the rational isolated actor approach that ignores the connectedness and complexity of criminality. The core computational solution, written in the R language, consists of novel entity resolution, link discovery, and knowledge discovery technology. Entity resolution enables the fusion of multiple datasets with high accuracy (mean F-measure of 0.986 versus competitors 0.872), generating a graph-based expressive view of the problem. Link discovery is comprised of link prediction and link inference, enabling the high-performance detection (accuracy of ~0.8 versus relevant published models ~0.45) of unobserved relationships such as identity fraud. Knowledge discovery uses the fused graph generated and applies the “GraphExtract” algorithm to create a set of subgraphs representing latent functional criminal groups, and a mesoscopic graph representing how this set of criminal groups are interconnected. Latent knowledge is generated from a range of metrics including the “Super-broker” metric and attitude prediction. The computational solution has been evaluated on a range of datasets that mimic an applied setting, demonstrating a scalable (tested on ~18 million node graphs) and performant (~33 hours runtime on a non-distributed platform) solution that successfully detects relevant latent functional criminal groups in around 90% of cases sampled and enables the contextual understanding of the broader criminal system through the mesoscopic graph and associated metadata. The augmented data assets generated provide a multi-perspective systems view of criminal activity that enable advanced informed decision making across the microscopic mesoscopic macroscopic spectrum
    • 

    corecore