480 research outputs found

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    Optimization of Convolutional Neural Network ensemble classifiers by Genetic Algorithms

    Get PDF
    Breast cancer exhibits a high mortality rate and it is the most invasive cancer in women. An analysis from histopathological images could predict this disease. In this way, computational image processing might support this task. In this work a proposal which employes deep learning convolutional neural networks is presented. Then, an ensemble of networks is considered in order to obtain an enhanced recognition performance of the system by the consensus of the networks of the ensemble. Finally, a genetic algorithm is also considered to choose the networks that belong to the ensemble. The proposal has been tested by carrying out several experiments with a set of benchmark images.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification

    Get PDF
    Machine learning methods have been an interesting method in the field of medical for many years, and they have achieved successful results in various fields of medical science. This paper examines the effects of using machine learning algorithms in the diagnosis and classification of breast cancer from mammography imaging data. Cancer diagnosis is the identification of images as cancer or non-cancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. This article studied 93 different references mentioned in the previous years in the field of processing and tries to find an effective way to diagnose and classify breast cancer. Based on the results of this research, it can be concluded that most of today’s successful methods focus on the use of deep learning methods. Finding a new method requires an overview of existing methods in the field of deep learning methods in order to make a comparison and case study

    Histopathological Image Classification Methods and Techniques in Deep Learning Field

    Get PDF
    A cancerous tumour in a woman's breast, Histopathology detects breast cancer. Histopathological images are a hotspot for medical study since they are difficult to judge manually. In addition to helping doctors identify and treat patients, this image classification can boost patient survival. This research addresses the merits and downsides of deep learning methods for histopathology imaging of breast cancer. The study's histopathology image classification and future directions are reviewed. Automatic histopathological image analysis often uses complete supervised learning where we can feed the labeled dataset to model for the classification. The research methods are frequentlytrust on feature extraction techniques tailored to specific challenges, such as texture, spatial, graph-based, and morphological features. Many deep learning models are also created for picture classification. There are various deep learning methods for classifying histopathology images

    Transfer and Ensemble Approach for Breast Cancer Detection and Classification Using Deep Learning

    Get PDF
    Breast cancer is a serious disease that can cause significant health problems for women worldwide. It is crucial to detect and classify breast cancer early stage so that doctors can promptly treat it and aid patients in their recovery. Many investigators have used various deep learning (DL) strategies to detect and classify breast cancer. However, due to the complexity of the problem, relying on a single DL model may not suffice to achieve high accuracy. Therefore, this study suggests a transfer and ensemble deep model for breast cancer detection and classification. The suggested model involves using pre-trained models such as Sequential, Xception, DenseNet201, VGG16, and InceptionResNetV2. The top three models are selected to collaborate and deliver the most accurate results. The proposed DL model was tested on publicly available breast BUSI datasets, demonstrating its superiority over single DL models, achieving an accuracy of 87.9% on the BUSI dataset. Additionally, the model proved to be adapTABLE to different amounts of data, making it potentially valuable in hospitals and clinics
    • …
    corecore