43 research outputs found

    TEST: A Terminology Extraction System for Technology Related Terms

    Get PDF
    Tracking developments in the highly dynamic data-technology landscape are vital to keeping up with novel technologies and tools, in the various areas of Artificial Intelligence (AI). However, It is difficult to keep track of all the relevant technology keywords. In this paper, we propose a novel system that addresses this problem. This tool is used to automatically detect the existence of new technologies and tools in text, and extract terms used to describe these new technologies. The extracted new terms can be logged as new AI technologies as they are found on-the-fly in the web. It can be subsequently classified into the relevant semantic labels and AI domains. Our proposed tool is based on a two-stage cascading model -- the first stage classifies if the sentence contains a technology term or not; and the second stage identifies the technology keyword in the sentence. We obtain a competitive accuracy for both tasks of sentence classification and text identification.Comment: Published in 11th International Conference on Computer and Automation Engineering (ICCAE 2019

    Improving Multiclass Text Classification with the Support Vector Machine

    Get PDF
    We compare Naive Bayes and Support Vector Machines on the task of multiclass text classification. Using a variety of approaches to combine the underlying binary classifiers, we find that SVMs substantially outperform Naive Bayes. We present full multiclass results on two well-known text data sets, including the lowest error to date on both data sets. We develop a new indicator of binary performance to show that the SVM's lower multiclass error is a result of its improved binary performance. Furthermore, we demonstrate and explore the surprising result that one-vs-all classification performs favorably compared to other approaches even though it has no error-correcting properties

    On using partial supervision for text categorization

    Get PDF
    Abstract-In this paper, we discuss the merits of building text categorization systems by using supervised clustering techniques. Traditional approaches for document classification on a predefined set of classes are often unable to provide sufficient accuracy because of the difficulty of fitting a manually categorized collection of documents in a given classification model. This is especially the case for heterogeneous collections of Web documents which have varying styles, vocabulary, and authorship. Hence, this paper investigates the use of clustering in order to create the set of categories and its use for classification of documents. Completely unsupervised clustering has the disadvantage that it has difficulty in isolating sufficiently fine-grained classes of documents relating to a coherent subject matter. In this paper, we use the information from a preexisting taxonomy in order to supervise the creation of a set of related clusters, though with some freedom in defining and creating the classes. We show that the advantage of using partially supervised clustering is that it is possible to have some control over the range of subjects that one would like the categorization system to address, but with a precise mathematical definition of how each category is defined. An extremely effective way then to categorize documents is to use this a priori knowledge of the definition of each category. We also discuss a new technique to help the classifier distinguish better among closely related clusters

    ExaCT: automatic extraction of clinical trial characteristics from journal publications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials are one of the most important sources of evidence for guiding evidence-based practice and the design of new trials. However, most of this information is available only in free text - e.g., in journal publications - which is labour intensive to process for systematic reviews, meta-analyses, and other evidence synthesis studies. This paper presents an automatic information extraction system, called ExaCT, that assists users with locating and extracting key trial characteristics (e.g., eligibility criteria, sample size, drug dosage, primary outcomes) from full-text journal articles reporting on randomized controlled trials (RCTs).</p> <p>Methods</p> <p>ExaCT consists of two parts: an information extraction (IE) engine that searches the article for text fragments that best describe the trial characteristics, and a web browser-based user interface that allows human reviewers to assess and modify the suggested selections. The IE engine uses a statistical text classifier to locate those sentences that have the highest probability of describing a trial characteristic. Then, the IE engine's second stage applies simple rules to these sentences to extract text fragments containing the target answer. The same approach is used for all 21 trial characteristics selected for this study.</p> <p>Results</p> <p>We evaluated ExaCT using 50 previously unseen articles describing RCTs. The text classifier (<it>first stage</it>) was able to recover 88% of relevant sentences among its top five candidates (top5 recall) with the topmost candidate being relevant in 80% of cases (top1 precision). Precision and recall of the extraction rules (<it>second stage</it>) were 93% and 91%, respectively. Together, the two stages of the extraction engine were able to provide (partially) correct solutions in 992 out of 1050 test tasks (94%), with a majority of these (696) representing fully correct and complete answers.</p> <p>Conclusions</p> <p>Our experiments confirmed the applicability and efficacy of ExaCT. Furthermore, they demonstrated that combining a statistical method with 'weak' extraction rules can identify a variety of study characteristics. The system is flexible and can be extended to handle other characteristics and document types (e.g., study protocols).</p

    GO for gene documents

    Get PDF
    corecore