321,617 research outputs found

    A model of the dynamics of organizational communication

    Get PDF
    We propose a model of the dynamics of organizational communication. Our model specifies the mechanics by which communication impact is fed back to communication inputs and closes the gap between sender and receiver of messages. We draw on language critique, a branch of language philosophy, and derive joint linguistic actions of interlocutors to explain the emergence and adaptation of communication on the group level. The model is framed by Te'eni's cognitive-affective model of organizational communication

    Dynamic mode decomposition with control

    Full text link
    We develop a new method which extends Dynamic Mode Decomposition (DMD) to incorporate the effect of control to extract low-order models from high-dimensional, complex systems. DMD finds spatial-temporal coherent modes, connects local-linear analysis to nonlinear operator theory, and provides an equation-free architecture which is compatible with compressive sensing. In actuated systems, DMD is incapable of producing an input-output model; moreover, the dynamics and the modes will be corrupted by external forcing. Our new method, Dynamic Mode Decomposition with control (DMDc), capitalizes on all of the advantages of DMD and provides the additional innovation of being able to disambiguate between the underlying dynamics and the effects of actuation, resulting in accurate input-output models. The method is data-driven in that it does not require knowledge of the underlying governing equations, only snapshots of state and actuation data from historical, experimental, or black-box simulations. We demonstrate the method on high-dimensional dynamical systems, including a model with relevance to the analysis of infectious disease data with mass vaccination (actuation).Comment: 10 pages, 4 figure

    On the importance of nonlinear modeling in computer performance prediction

    Full text link
    Computers are nonlinear dynamical systems that exhibit complex and sometimes even chaotic behavior. The models used in the computer systems community, however, are linear. This paper is an exploration of that disconnect: when linear models are adequate for predicting computer performance and when they are not. Specifically, we build linear and nonlinear models of the processor load of an Intel i7-based computer as it executes a range of different programs. We then use those models to predict the processor loads forward in time and compare those forecasts to the true continuations of the time seriesComment: Appeared in "Proceedings of the 12th International Symposium on Intelligent Data Analysis

    The emergence of information systems: a communication-based theory

    Get PDF
    An information system is more than just the information technology; it is the system that emerges from the complex interactions and relationships between the information technology and the organization. However, what impact information technology has on an organization and how organizational structures and organizational change influence information technology remains an open question. We propose a theory to explain how communication structures emerge and adapt to environmental changes. We operationalize the interplay of information technology and organization as language communities whose members use and develop domain-specific languages for communication. Our theory is anchored in the philosophy of language. In developing it as an emergent perspective, we argue that information systems are self-organizing and that control of this ability is disseminated throughout the system itself, to the members of the language community. Information technology influences the dynamics of this adaptation process as a fundamental constraint leading to perturbations for the information system. We demonstrate how this view is separated from the entanglement in practice perspective and show that this understanding has far-reaching consequences for developing, managing, and examining information systems
    • …
    corecore