39 research outputs found

    Improvements to the complex question answering models

    Get PDF
    x, 128 leaves : ill. ; 29 cmIn recent years the amount of information on the web has increased dramatically. As a result, it has become a challenge for the researchers to find effective ways that can help us query and extract meaning from these large repositories. Standard document search engines try to address the problem by presenting the users a ranked list of relevant documents. In most cases, this is not enough as the end-user has to go through the entire document to find out the answer he is looking for. Question answering, which is the retrieving of answers to natural language questions from a document collection, tries to remove the onus on the end-user by providing direct access to relevant information. This thesis is concerned with open-domain complex question answering. Unlike simple questions, complex questions cannot be answered easily as they often require inferencing and synthesizing information from multiple documents. Hence, we considered the task of complex question answering as query-focused multi-document summarization. In this thesis, to improve complex question answering we experimented with both empirical and machine learning approaches. We extracted several features of different types (i.e. lexical, lexical semantic, syntactic and semantic) for each of the sentences in the document collection in order to measure its relevancy to the user query. We have formulated the task of complex question answering using reinforcement framework, which to our best knowledge has not been applied for this task before and has the potential to improve itself by fine-tuning the feature weights from user feedback. We have also used unsupervised machine learning techniques (random walk, manifold ranking) and augmented semantic and syntactic information to improve them. Finally we experimented with question decomposition where instead of trying to find the answer of the complex question directly, we decomposed the complex question into a set of simple questions and synthesized the answers to get our final result

    A reinforcement learning formulation to the complex question answering problem

    Get PDF
    International audienceWe use extractive multi-document summarization techniques to perform complex question answering and formulate it as a reinforcement learning problem. Given a set of complex questions, a list of relevant documents per question, and the corresponding human generated summaries (i.e. answers to the questions) as training data, the reinforcement learning module iteratively learns a number of feature weights in order to facilitate the automatic generation of summaries i.e. answers to previously unseen complex questions. A reward function is used to measure the similarities between the candidate (machine generated) summary sentences and the abstract summaries. In the training stage, the learner iteratively selects the important document sentences to be included in the candidate summary, analyzes the reward function and updates the related feature weights accordingly. The final weights are used to generate summaries as answers to unseen complex questions in the testing stage. Evaluation results show the effectiveness of our system. We also incorporate user interaction into the reinforcement learner to guide the candidate summary sentence selection process. Experiments reveal the positive impact of the user interaction component on the reinforcement learning framework

    Complex question answering : minimizing the gaps and beyond

    Get PDF
    xi, 192 leaves : ill. ; 29 cmCurrent Question Answering (QA) systems have been significantly advanced in demonstrating finer abilities to answer simple factoid and list questions. Such questions are easier to process as they require small snippets of texts as the answers. However, there is a category of questions that represents a more complex information need, which cannot be satisfied easily by simply extracting a single entity or a single sentence. For example, the question: “How was Japan affected by the earthquake?” suggests that the inquirer is looking for information in the context of a wider perspective. We call these “complex questions” and focus on the task of answering them with the intention to minimize the existing gaps in the literature. The major limitation of the available search and QA systems is that they lack a way of measuring whether a user is satisfied with the information provided. This was our motivation to propose a reinforcement learning formulation to the complex question answering problem. Next, we presented an integer linear programming formulation where sentence compression models were applied for the query-focused multi-document summarization task in order to investigate if sentence compression improves the overall performance. Both compression and summarization were considered as global optimization problems. We also investigated the impact of syntactic and semantic information in a graph-based random walk method for answering complex questions. Decomposing a complex question into a series of simple questions and then reusing the techniques developed for answering simple questions is an effective means of answering complex questions. We proposed a supervised approach for automatically learning good decompositions of complex questions in this work. A complex question often asks about a topic of user’s interest. Therefore, the problem of complex question decomposition closely relates to the problem of topic to question generation. We addressed this challenge and proposed a topic to question generation approach to enhance the scope of our problem domain

    Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature

    Get PDF
    BACKGROUND: Information about drug-drug interactions (DDIs) supported by scientific evidence is crucial for establishing computational knowledge bases for applications like pharmacovigilance. Since new reports of DDIs are rapidly accumulating in the scientific literature, text-mining techniques for automatic DDI extraction are critical. We propose a novel approach for automated pharmacokinetic (PK) DDI detection that incorporates syntactic and semantic information into graph kernels, to address the problem of sparseness associated with syntactic-structural approaches. First, we used a novel all-path graph kernel using shallow semantic representation of sentences. Next, we statistically integrated fine-granular semantic classes into the dependency and shallow semantic graphs. RESULTS: When evaluated on the PK DDI corpus, our approach significantly outperformed the original all-path graph kernel that is based on dependency structure. Our system that combined dependency graph kernel with semantic classes achieved the best F-scores of 81.94 % for in vivo PK DDIs and 69.34 % for in vitro PK DDIs, respectively. Further, combining shallow semantic graph kernel with semantic classes achieved the highest precisions of 84.88 % for in vivo PK DDIs and 74.83 % for in vitro PK DDIs, respectively. CONCLUSIONS: We presented a graph kernel based approach to combine syntactic and semantic information for extracting pharmacokinetic DDIs from Biomedical Literature. Experimental results showed that our proposed approach could extract PK DDIs from literature effectively, which significantly enhanced the performance of the original all-path graph kernel based on dependency structure

    Opinion Expression Mining by Exploiting Keyphrase Extraction

    Get PDF

    Research on the automatic construction of the resource space model for scientific literature

    Get PDF
    The resource space model is a semantic data model to organize Web resources based on a classification of resources. The scientific resource space is an application of the resource space model on massive scientific literature resources. The construction of a scientific resource space needs to build a category (or concept) hierarchy and classify resources. Manual design suffers from heavy workload and low efficiency. In this thesis, we propose novel methods to solve the following two problems in the construction of a scientific resource space: 1. Automatic maintenance of a category hierarchy. A category hierarchy needs to evolve dynamically with new resources continually arriving so as to satisfy the dynamic re-quirements of the organization and management of resources. We propose an automatic maintenance approach to modifying the category hierarchy according to the hierarchical clustering of resources and show the effectiveness of this method by a series of comparison experiments on multiple datasets. 2. Automatic construction of a concept hierarchy. We propose a joint extraction model based on a deep neural network to extract entities and relations from scientific articles and build a concept hierarchy. Experimental results show the effectiveness of the joint model on the Semeval 2017 Task 10 dataset. We also implement a prototype system of the scientific resource space. The prototype system enables the comparative summarization on scientific articles. A set of novel comparative summarization methods based on the differential topic models (dTM) are proposed in this thesis. The effectiveness of the dTM-based methods is shown by a series of experimental results

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Representation Learning for Natural Language Processing

    Get PDF
    This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing
    corecore