91 research outputs found

    A Novel ILP Framework for Summarizing Content with High Lexical Variety

    Full text link
    Summarizing content contributed by individuals can be challenging, because people make different lexical choices even when describing the same events. However, there remains a significant need to summarize such content. Examples include the student responses to post-class reflective questions, product reviews, and news articles published by different news agencies related to the same events. High lexical diversity of these documents hinders the system's ability to effectively identify salient content and reduce summary redundancy. In this paper, we overcome this issue by introducing an integer linear programming-based summarization framework. It incorporates a low-rank approximation to the sentence-word co-occurrence matrix to intrinsically group semantically-similar lexical items. We conduct extensive experiments on datasets of student responses, product reviews, and news documents. Our approach compares favorably to a number of extractive baselines as well as a neural abstractive summarization system. The paper finally sheds light on when and why the proposed framework is effective at summarizing content with high lexical variety.Comment: Accepted for publication in the journal of Natural Language Engineering, 201

    TGSum: Build Tweet Guided Multi-Document Summarization Dataset

    Full text link
    The development of summarization research has been significantly hampered by the costly acquisition of reference summaries. This paper proposes an effective way to automatically collect large scales of news-related multi-document summaries with reference to social media's reactions. We utilize two types of social labels in tweets, i.e., hashtags and hyper-links. Hashtags are used to cluster documents into different topic sets. Also, a tweet with a hyper-link often highlights certain key points of the corresponding document. We synthesize a linked document cluster to form a reference summary which can cover most key points. To this aim, we adopt the ROUGE metrics to measure the coverage ratio, and develop an Integer Linear Programming solution to discover the sentence set reaching the upper bound of ROUGE. Since we allow summary sentences to be selected from both documents and high-quality tweets, the generated reference summaries could be abstractive. Both informativeness and readability of the collected summaries are verified by manual judgment. In addition, we train a Support Vector Regression summarizer on DUC generic multi-document summarization benchmarks. With the collected data as extra training resource, the performance of the summarizer improves a lot on all the test sets. We release this dataset for further research.Comment: 7 pages, 1 figure in AAAI 201

    Multi-Document Summarization via Discriminative Summary Reranking

    Full text link
    Existing multi-document summarization systems usually rely on a specific summarization model (i.e., a summarization method with a specific parameter setting) to extract summaries for different document sets with different topics. However, according to our quantitative analysis, none of the existing summarization models can always produce high-quality summaries for different document sets, and even a summarization model with good overall performance may produce low-quality summaries for some document sets. On the contrary, a baseline summarization model may produce high-quality summaries for some document sets. Based on the above observations, we treat the summaries produced by different summarization models as candidate summaries, and then explore discriminative reranking techniques to identify high-quality summaries from the candidates for difference document sets. We propose to extract a set of candidate summaries for each document set based on an ILP framework, and then leverage Ranking SVM for summary reranking. Various useful features have been developed for the reranking process, including word-level features, sentence-level features and summary-level features. Evaluation results on the benchmark DUC datasets validate the efficacy and robustness of our proposed approach
    corecore