1,652 research outputs found

    Using State Space Exploration to Determine How Gene Regulatory Networks Constrain Mutation Order in Cancer Evolution

    Get PDF
    Cancer develops via the progressive accumulation of somatic mutations, which subvert the normal operation of the gene regulatory network of the cell. However, little is known about the order in which mutations are acquired in successful clones. A particular sequence of mutations may confer an early selective advantage to a clone by increasing survival or proliferation, or lead to negative selection by triggering cell death. The space of allowed sequences of mutations is therefore constrained by the gene regulatory network. Here, we introduce a methodology for the systematic exploration of the effect of every possible sequence of oncogenic mutations in a cancer cell modelled as a qualitative network. Our method uses attractor identification using binary decision diagrams and can be applied to both synchronous and asynchronous systems. We demonstrate our method using a recently developed model of ER-negative breast cancer. We show that there are differing levels of constraint in the order of mutations for different combinations of oncogenes, and that the effects of ErbB2/HER2 over-expression depend on the preceding mutations

    From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics

    Get PDF
    Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves into a critical and constructive attitude in our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.Comment: 111 pages, 11 figures uses elsarticle latex clas

    Executable cancer models: successes and challenges

    Get PDF
    Making decisions on how best to treat cancer patients requires the integration of different data sets, including genomic profiles, tumour histopathology, radiological images, proteomic analysis and more. This wealth of biological information calls for novel strategies to integrate such information in a meaningful, predictive and experimentally verifiable way. In this Perspective we explain how executable computational models meet this need. Such models provide a means for comprehensive data integration, can be experimentally validated, are readily interpreted both biologically and clinically, and have the potential to predict effective therapies for different cancer types and subtypes. We explain what executable models are and how they can be used to represent the dynamic biological behaviours inherent in cancer, and demonstrate how such models, when coupled with automated reasoning, facilitate our understanding of the mechanisms by which oncogenic signalling pathways regulate tumours. We explore how executable models have impacted the field of cancer research and argue that extending them to represent a tumour in a specific patient (that is, an avatar) will pave the way for improved personalized treatments and precision medicine. Finally, we highlight some of the ongoing challenges in developing executable models and stress that effective cross-disciplinary efforts are key to forward progress in the field

    Predicting evolution using regulatory architecture

    Get PDF
    The limits of evolution have long fascinated biologists. However, the causes of evolutionary constraint have remained elusive due to a poor mechanistic understanding of studied phenotypes. Recently, a range of innovative approaches have leveraged mechanistic information on regulatory networks and cellular biology. These methods combine systems biology models with population and single-cell quantification and with new genetic tools, and they have been applied to a range of complex cellular functions and engineered networks. In this article, we review these developments, which are revealing the mechanistic causes of epistasis at different levels of biological organization¤mdash¤in molecular recognition, within a single regulatory network, and between different networks¤mdash¤providing first indications of predictable features of evolutionary constraint

    Characterizing Signal Transduction Networks and Biological Responses Using Computer Simulations and Machine Learning

    Get PDF
    The use of computer simulations in biology is often limited due to the lack of experimentally measured parameters. In these scenarios, parameter exploration can be used to probe biological systems and refine understanding of biological mechanisms. For systems with few unknown parameters, parameter sweeps that concurrently vary all unknown parameters are tractable. In complex systems with many unknown parameters, supervised machine learning algorithms can be used to discover parameters leading to targeted system responses. In this thesis, we study three biological problems in which we use parameter exploration methods to gain mechanistic insights. We first explore the role of altered metabolism in cancer cells that reside in heterogeneous tumor microenvironments. We use a multiscale, hybrid cellular automaton model to evaluate tumor progression while varying malignant cell traits using a systematic parameter sweep. The results reveal distinct growth regimes associated with varied malignant cell traits. We then study kinetic mechanisms governing fixed-topology signal transduction networks and use evolutionary algorithms to discover kinetic parameters that produce specified network responses. We analyze the growth-response network in Arabidopsis with this supervised machine learning approach. This allows us to identify constraints on kinetic parameters that govern the observed responses. The evolved parameters are used to calculate the responses of individual network components, which are used to generate hypotheses that can be tested in vivo to help determine the network topology. We finally apply a similar approach to redesign signal transduction networks. We demonstrate that the T cell receptor network and an oscillator network show remarkable flexibility in generating altered responses to input, and we further use a nonlinear clustering method to identify design criteria for the underlying kinetic parameters. For each project, observations produced from in silico simulations lead to the formation of hypotheses that are experimentally testable

    Machine Learning Guided Exploration of an Empirical Ribozyme Fitness Landscape

    Get PDF
    Okinawa Institute of Science and Technology Graduate UniversityDoctor of PhilosophyFitness landscape of a biomolecule is a representation of its activity as a function of its sequence. Properties of a fitness landscape determine how evolution proceeds. Therefore, the distribution of functional variants and more importantly, the connectivity of these variants within the sequence space are important scientific questions. Exploration of these spaces, however, is impeded by the combinatorial explosion of the sequence space. High-throughput experimental methods have recently reduced this impediment but only modestly. Better computational methods are needed to fully utilize the rich information from these experimental data to better understand the properties of the fitness landscape. In this work, I seek to improve this exploration process by combining data from massively parallel experimental assay with smart library design using advanced computational techniques. I focus on an artificial RNA enzyme or ribozyme that can catalyze a ligation reaction between two RNA fragments. This chemistry is analogous to that of the modern RNA polymeraseenzymes, therefore, represents an important reaction in the origin of life. In the first chapter, I discuss the background to this work in the context of evolutionary theory of fitness landscape and its implications in biotechnology. In chapter 2, I explore the use of processes borrowed from the field of evolutionary computation to solve optimization problems using real experimental sequence-activity data. In chapter 3, I investigate the use of supervised machine learning models to extract information on epistatic interactions from the dataset collected during multiple rounds of directed evolution. I investigate and experimentally validate the extent to which a deep learning model can be used to guide a completely computational evolutionary algorithm towards distant regions of the fitness landscape. In the final chapter, I perform a comprehensive experimental assay of the combinatorial region explored by the deep learning-guided evolutionary algorithm. Using this dataset, I analyze higher-order epistasis and attempt to explain the increased predictability of the region sampled by the algorithm. Finally, I provide the first experimental evidence of a large RNA ‘neutral network’. Altogether, this work represents the most comprehensive experimental and computational study of the RNA ligase ribozyme fitness landscape to date, providing important insights into the evolutionary search space possibly explored during the earliest stages of life.doctoral thesi
    corecore