85 research outputs found

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    GREEN RADIO COMMUNICATIONS IN 5G NETWORKS TO IMPROVE ENERGY EFFICIENCY AND REDUCE GLOBAL WARMING

    Get PDF
    The technology of green radio communication helps in reducing the emission of carbon and also helps in the process of reducing the consumption of energy by the base stations of wireless networks. In addition to that, with the help of tools such as Information Communication Technology (ICT) and Multi-Hop Relay Network (MHR), the functionalities and the operational attributes of the technology of green radio communication can be improved and the process of energy consumption gets better as well. It is found from the discussion that green networking technology has mainly two core components and the two core components are energy awareness and energy efficiency. The ability of the network to measure the cost per packet is called energy awareness. On the other hand, the ability of a network to decrease the contribution of carbon and extend the lifetime of the network can be called energy efficiency. In addition, the implementation of the technology of green radio communication helps in mitigating the issue of future energy crises. Additionally, it has also been understood that Green communication in terms of energy efficiency can help IT industry which has been extensively criticised for the contribution of the carbon emissions as well as the failure to respond to the negative impact on the whole climate. In fact, the next generation networks have imposed the challenges in terms of the provision of the energy efficient solutions which are provided and the transportation of the data along with the huge range of the quality of the services requirement as well as the tolerance of lower optimum services.The technology of green radio communication helps in reducing the emission of carbon and also helps in the process of reducing the consumption of energy by the base stations of wireless networks. In addition to that, with the help of tools such as Information Communication Technology (ICT) and Multi-Hop Relay Network (MHR), the functionalities and the operational attributes of the technology of green radio communication can be improved and the process of energy consumption gets better as well. It is found from the discussion that green networking technology has mainly two core components and the two core components are energy awareness and energy efficiency. The ability of the network to measure the cost per packet is called energy awareness. On the other hand, the ability of a network to decrease the contribution of carbon and extend the lifetime of the network can be called energy efficiency. In addition, the implementation of the technology of green radio communication helps in mitigating the issue of future energy crises. Additionally, it has also been understood that Green communication in terms of energy efficiency can help IT industry which has been extensively criticised for the contribution of the carbon emissions as well as the failure to respond to the negative impact on the whole climate. In fact, the next generation networks have imposed the challenges in terms of the provision of the energy efficient solutions which are provided and the transportation of the data along with the huge range of the quality of the services requirement as well as the tolerance of lower optimum services

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications
    corecore