422 research outputs found

    Automatic Detectors for Underwater Soundscape Measurements

    Get PDF
    Environmental impact regulations require that marine industrial operators quantify their contribution to underwater noise scenes. Automation of such assessments becomes feasible with the successful categorisation of sounds into broader classes based on source types – biological, anthropogenic and physical. Previous approaches to passive acoustic monitoring have mostly been limited to a few specific sources of interest. In this study, source-independent signal detectors are developed and a framework is presented for the automatic categorisation of underwater sounds into the aforementioned classes

    Analysis of Mammographic Images for Early Detection of Breast Cancer Using Machine Learning Techniques

    Get PDF
    Breast cancer is the main reason for death among women. Radiographic images obtained from mammography equipment are one of the most frequently used techniques for helping in early detection of breast cancer. The motivation behind this study is to focus the tumour types of breast cancer images .It is methodology to anticipated a sickness in view of the visual conclusion of breast disease tumour types with precision, particularly when numerous feature are related. Breast Cancer (BC) is one such sample where the phenomenon is very complex furthermore numerous feature of tumour types are included. In the present investigation, various pattern recognition techniques were used for the classification of breast cancer using mammograms image processing techniques .The pattern recognition techniques for tumour image enhancements, segmentation, texture based image feature extraction and subsequent classification of breast cancer mammogram image was successfully performed. When two machine learning techniques such as Artificial Neural Network (ANN), Support Vector Machine (SVM) were used to classify 120 images, it was observed from the results that Artificial Neural Network classifiers demonstrated the h classification rate 91.31% and the SVM with both Radial Basis Function (RBF) and linear kernel classifiers demonstrated the highest classification rate of 92.11% and RBF classification rate is 92.85%

    Analysis of Mammographic Images for Early Detection of Breast Cancer Using Machine Learning Techniques

    Get PDF
    Breast cancer is the main reason for death among women. Radiographic images obtained from mammography equipment are one of the most frequently used techniques for helping in early detection of breast cancer. The motivation behind this study is to focus the tumour types of breast cancer images .It is methodology to anticipated a sickness in view of the visual conclusion of breast disease tumour types with precision, particularly when numerous feature are related. Breast Cancer (BC) is one such sample where the phenomenon is very complex furthermore numerous feature of tumour types are included. In the present investigation, various pattern recognition techniques were used for the classification of breast cancer using mammograms image processing techniques .The pattern recognition techniques for tumour image enhancements, segmentation, texture based image feature extraction and subsequent classification of breast cancer mammogram image was successfully performed. When two machine learning techniques such as Artificial Neural Network (ANN), Support Vector Machine (SVM) were used to classify 120 images, it was observed from the results that Artificial Neural Network classifiers demonstrated the h classification rate 91.31% and the SVM with both Radial Basis Function (RBF) and linear kernel classifiers demonstrated the highest classification rate of 92.11% and RBF classification rate is 92.85%

    Advanced signal processing tools for ballistic missile defence and space situational awareness

    Get PDF
    The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose.The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose

    Robot Vision in the Language of Geometric Algebra

    Get PDF

    New algorithms for the analysis of live-cell images acquired in phase contrast microscopy

    Get PDF
    La détection et la caractérisation automatisée des cellules constituent un enjeu important dans de nombreux domaines de recherche tels que la cicatrisation, le développement de l'embryon et des cellules souches, l’immunologie, l’oncologie, l'ingénierie tissulaire et la découverte de nouveaux médicaments. Étudier le comportement cellulaire in vitro par imagerie des cellules vivantes et par le criblage à haut débit implique des milliers d'images et de vastes quantités de données. Des outils d'analyse automatisés reposant sur la vision numérique et les méthodes non-intrusives telles que la microscopie à contraste de phase (PCM) sont nécessaires. Comme les images PCM sont difficiles à analyser en raison du halo lumineux entourant les cellules et de la difficulté à distinguer les cellules individuelles, le but de ce projet était de développer des algorithmes de traitement d'image PCM dans Matlab® afin d’en tirer de l’information reliée à la morphologie cellulaire de manière automatisée. Pour développer ces algorithmes, des séries d’images de myoblastes acquises en PCM ont été générées, en faisant croître les cellules dans un milieu avec sérum bovin (SSM) ou dans un milieu sans sérum (SFM) sur plusieurs passages. La surface recouverte par les cellules a été estimée en utilisant un filtre de plage de valeurs, un seuil et une taille minimale de coupe afin d'examiner la cinétique de croissance cellulaire. Les résultats ont montré que les cellules avaient des taux de croissance similaires pour les deux milieux de culture, mais que celui-ci diminue de façon linéaire avec le nombre de passages. La méthode de transformée par ondelette continue combinée à l’analyse d'image multivariée (UWT-MIA) a été élaborée afin d’estimer la distribution de caractéristiques morphologiques des cellules (axe majeur, axe mineur, orientation et rondeur). Une analyse multivariée réalisée sur l’ensemble de la base de données (environ 1 million d’images PCM) a montré d'une manière quantitative que les myoblastes cultivés dans le milieu SFM étaient plus allongés et plus petits que ceux cultivés dans le milieu SSM. Les algorithmes développés grâce à ce projet pourraient être utilisés sur d'autres phénotypes cellulaires pour des applications de criblage à haut débit et de contrôle de cultures cellulaires.Automated cell detection and characterization is important in many research fields such as wound healing, embryo development, immune system studies, cancer research, parasite spreading, tissue engineering, stem cell research and drug research and testing. Studying in vitro cellular behavior via live-cell imaging and high-throughput screening involves thousands of images and vast amounts of data, and automated analysis tools relying on machine vision methods and non-intrusive methods such as phase contrast microscopy (PCM) are a necessity. However, there are still some challenges to overcome, since PCM images are difficult to analyze because of the bright halo surrounding the cells and blurry cell-cell boundaries when they are touching. The goal of this project was to develop image processing algorithms to analyze PCM images in an automated fashion, capable of processing large datasets of images to extract information related to cellular viability and morphology. To develop these algorithms, a large dataset of myoblasts images acquired in live-cell imaging (in PCM) was created, growing the cells in either a serum-supplemented (SSM) or a serum-free (SFM) medium over several passages. As a result, algorithms capable of computing the cell-covered surface and cellular morphological features were programmed in Matlab®. The cell-covered surface was estimated using a range filter, a threshold and a minimum cut size in order to look at the cellular growth kinetics. Results showed that the cells were growing at similar paces for both media, but their growth rate was decreasing linearly with passage number. The undecimated wavelet transform multivariate image analysis (UWT-MIA) method was developed, and was used to estimate cellular morphological features distributions (major axis, minor axis, orientation and roundness distributions) on a very large PCM image dataset using the Gabor continuous wavelet transform. Multivariate data analysis performed on the whole database (around 1 million PCM images) showed in a quantitative manner that myoblasts grown in SFM were more elongated and smaller than cells grown in SSM. The algorithms developed through this project could be used in the future on other cellular phenotypes for high-throughput screening and cell culture control applications

    Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images

    Get PDF
    In the present work hypercomplex spectral methods of the processing and analysis of images are introduced. The thesis is divided into three main chapters. First the quaternionic Fourier transform (QFT) for 2D signals is presented and its main properties are investigated. The QFT is closely related to the 2D Fourier transform and to the 2D Hartley transform. Similarities and differences of these three transforms are investigated with special emphasis on the symmetry properties. The Clifford Fourier transform is presented as nD generalization of the QFT. Secondly the concept of the phase of a signal is considered. We distinguish the global, the local and the instantaneous phase of a signal. It is shown how these 1D concepts can be extended to 2D using the QFT. In order to extend the concept of global phase we introduce the notion of the quaternionic analytic signal of a real signal. Defining quaternionic Gabor filters leads to the definition of the local quaternionic phase. The relation between signal structure and local signal phase, which is well-known in 1D, is extended to 2D using the quaternionic phase. In the third part two application of the theory are presented. For the image processing tasks of disparity estimation and texture segmentation there exist approaches which are based on the (complex) local phase. These methods are extended to the use of the quaternionic phase. In either case the properties of the complex approaches are preserved while new features are added by using the quaternionic phase

    Multi-texture image segmentation

    Get PDF
    Visual perception of images is closely related to the recognition of the different texture areas within an image. Identifying the boundaries of these regions is an important step in image analysis and image understanding. This thesis presents supervised and unsupervised methods which allow an efficient segmentation of the texture regions within multi-texture images. The features used by the methods are based on a measure of the fractal dimension of surfaces in several directions, which allows the transformation of the image into a set of feature images, however no direct measurement of the fractal dimension is made. Using this set of features, supervised and unsupervised, statistical processing schemes are presented which produce low classification error rates. Natural texture images are examined with particular application to the analysis of sonar images of the seabed. A number of processes based on fractal models for texture synthesis are also presented. These are used to produce realistic images of natural textures, again with particular reference to sonar images of the seabed, and which show the importance of phase and directionality in our perception of texture. A further extension is shown to give possible uses for image coding and object identification

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    The visual representation of texture

    Get PDF
    This research is concerned with texture: a source of visual information, that has motivated a huge amount of psychophysical and computational research. This thesis questions how useful the accepted view of texture perception is. From a theoretical point of view, work to date has largely avoided two critical aspects of a computational theory of texture perception. Firstly, what is texture? Secondly, what is an appropriate representation for texture? This thesis argues that a task dependent definition of texture is necessary, and proposes a multi-local, statistical scheme for representing texture orientation. Human performance on a series of psychophysical orientation discrimination tasks are compared to specific predictions from the scheme. The first set of experiments investigate observers' ability to directly derive statistical estimates from texture. An analogy is reported between the way texture statistics are derived, and the visual processing of spatio-luminance features. The second set of experiments are concerned with the way texture elements are extracted from images (an example of the generic grouping problem in vision). The use of highly constrained experimental tasks, typically texture orientation discriminations, allows for the formulation of simple statistical criteria for setting critical parameters of the model (such as the spatial scale of analysis). It is shown that schemes based on isotropic filtering and symbolic matching do not suffice for performing this grouping, but that the scheme proposed, base on oriented mechanisms, does. Taken together these results suggest a view of visual texture processing, not as a disparate collection of processes, but as a general strategy for deriving statistical representations of images common to a range of visual tasks
    corecore